V7 Appareil spécial ALMEMO® 202
pour capteurs numériques

V2.2
14/04/2015

www.ahlborn.com
1. Organes de manipulation

1. ORGANES DE MANIPULATION

(1) Prises de mesure M0 et M1
 M0...M1 uniquement pour capteurs ALMEMO®
 numériques DIGI, D6 et D7
 M0.0 à M1.9 jusqu’à 20 canaux de mesure

(2) Prises de sortie A1, A2
 A1 Interface USB (ZA 1919-DKU)
 fibre optique (ZA1909-DKL)
 V24 (ZA1909-DK5)
 Ethernet (ZA1945-DK)
 RS422 (ZA5099-NVL/NVB)
 Entrée déclenchement (ZA1000-ET/EK)
 Sorties relais (ZA1006-EGK)
 Sortie analogique 1 (ZA1601-RK)
 A2 Câble réseau (ZA1999-NK5/NKL)
 Connecteur mémoire (ZA1904-SD)
 Entrée déclenchement (ZA1000-ET/EK)
 Sorties relais (ZA1006-EGK)
 Relais déclencheur adaptateur (ZA1006-RTA)
 Sortie analogique 2 (ZA1601-RK)

(3) Prise raccordement CC 12 V
 adapt. secteur (ZA 1312-NA7, 12V, 1A)
 câble isol. galv. (ZA2690-UK, 10-30 V)

(4) Afficheur graphique LCD
 7 lignes pour les fonctions
 1 ligne pour touches prog. F1, ◀, ▲, ◁, F2
 Affichage entre parenthèses : <MENU>, <FCT>

(5) Touches de service
 ON Mise en marche appareil,
 appui long désactiver
 F1, F2 touches de fonction (programmables)
 ▲, ◁ M : Choix pts mesure
 ◀, ▲, ◁ F: Choix des menus
 PROG ◀, ▲ F : Sélection de fonction
 ◀... Retour jusqu’au choix de menu
 ▲, ◁ Menu mesure en direct
 ◀, ▲ Menu fonctions en direct
 PROG Programmation
 ▲, ◁ Saisie des données
 Dos de l’appareil :

(6) Compartiment piles
 3 piles R6 (AA) alcaline-manganèse
2. TABLE DES MATIÈRES

1. ORGANES DE MANIPULATION ... 2
2. GÉNÉRALITÉS ... 6
 3.1 Garantie .. 6
 3.2 Éléments livrés .. 7
 3.3 Élimination .. 7
3. CONSIGNES DE SÉCURITÉ ... 8
 4.1 Instructions particulières d'utilisation ... 9
 4.2 Manipulation des piles ou des accumulateurs .. 9
4. INTRODUCTION ... 10
 5.1 Les fonctions de l'ALMEMO 202 .. 11
 5.1.1 Programmation des capteurs ... 11
 5.1.2 Mesure .. 12
 5.1.3 Commande de scrutation ... 13
5. MISE EN SERVICE .. 16
6. ALIMENTATION ... 17
 7.1 Fonctionnement sur pile et contrôle de tension d'alimentation 17
 7.2 Fonctionnement sur secteur .. 17
 7.3 Alimentation externe en tension continue .. 17
 7.4 Alimentation capteur .. 18
 7.5 Mise sous tension, hors tension, réinitialisation 18
 7.6 Mise en mémoire tampon des données ... 18
7. RACCORDEMENT DES CAPTEURS .. 19
 8.1 Capteurs standards (V5) .. 19
 8.2 Capteur D6 .. 19
 8.3 Capteur D7 .. 19
 8.4 Entrées de mesure et canaux supplémentaires 20
 8.5 Isolement .. 20
8. AFFICHAGE ET TOUCHES ... 22
 9.1 Afficheur et choix du menu .. 22
 9.2 Affichage de la mesure et des symboles de contrôle 22
 9.3 Touches de fonction .. 23
 9.4 Sélection de fonction .. 24
 9.5 Saisie des données .. 24
9. SÉLECTION DE MENUS ... 26
10. MENUS DE MESURE .. 27
 11.1 Menu Affichage des capteurs .. 27
 11.1.1 Sélection d'un canal de mesure ... 27
 11.2 Correction de la mesure et compensation ... 27
 11.2.1 Mise à zéro mesure .. 28

<table>
<thead>
<tr>
<th>Numéro</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Table des matières</td>
<td></td>
</tr>
<tr>
<td>11.2.2</td>
<td>Compensation de pression atmosphérique</td>
<td>28</td>
</tr>
<tr>
<td>11.3</td>
<td>Menu Liste des points de mesure</td>
<td>29</td>
</tr>
<tr>
<td>11.4</td>
<td>Menu utilisateur U1 Commande de scrutation</td>
<td>30</td>
</tr>
<tr>
<td>11.5</td>
<td>Menu utilisateur U2 centrale d’acquisition</td>
<td>30</td>
</tr>
<tr>
<td>12.</td>
<td>SCRUTATION DES MESURES ET SORTIE</td>
<td>31</td>
</tr>
<tr>
<td>13.</td>
<td>MENUS UTILISATEUR</td>
<td>32</td>
</tr>
<tr>
<td>13.1</td>
<td>Fonctions</td>
<td></td>
</tr>
<tr>
<td>13.2</td>
<td>Configuration des menus utilisateur</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>MENUS DE FONCTION</td>
<td>35</td>
</tr>
<tr>
<td>14.1</td>
<td>Max, min et mémoire de valeurs individuelles</td>
<td></td>
</tr>
<tr>
<td>14.2</td>
<td>Calcul de moyenne</td>
<td></td>
</tr>
<tr>
<td>14.2.1</td>
<td>Lissage de la mesure par calcul de moyenne mobile</td>
<td>36</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Moyenne sur mesures individuelles manuelles</td>
<td>37</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Calcul de valeur moyenne sur le temps</td>
<td>38</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Calcul de la moyenne sur le cycle</td>
<td>38</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Calcul de moyenne sur points de mesure</td>
<td>39</td>
</tr>
<tr>
<td>14.2.6</td>
<td>Mesure de débit volumique</td>
<td></td>
</tr>
<tr>
<td>14.3</td>
<td>Compensation deux points avec saisie de consigne</td>
<td>40</td>
</tr>
<tr>
<td>14.4</td>
<td>Échelle</td>
<td></td>
</tr>
<tr>
<td>14.5</td>
<td>Fonctions de centrale d’acquisition</td>
<td>41</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Connecteur mémoire externe avec carte mémoire</td>
<td>42</td>
</tr>
<tr>
<td>14.5.2</td>
<td>Numérotation des mesures</td>
<td>42</td>
</tr>
<tr>
<td>14.5.3</td>
<td>Mémorisation unique de tous les points de mesure</td>
<td>43</td>
</tr>
<tr>
<td>14.5.4</td>
<td>Mémorisation cyclique de tous les points de mesure</td>
<td>43</td>
</tr>
<tr>
<td>14.5.5</td>
<td>Espace mémoire, Éditer la mémoire et l'effacer</td>
<td>44</td>
</tr>
<tr>
<td>14.5.6</td>
<td>Configuration de scrutation</td>
<td>44</td>
</tr>
<tr>
<td>14.5.7</td>
<td>Mode scrutation</td>
<td>45</td>
</tr>
<tr>
<td>14.5.8</td>
<td>Démarrage et arrêt des mesures</td>
<td>47</td>
</tr>
<tr>
<td>15.</td>
<td>PROGRAMMATION DES CAPTEURS</td>
<td>48</td>
</tr>
<tr>
<td>15.1</td>
<td>Sélection du canal d'entrée</td>
<td>48</td>
</tr>
<tr>
<td>15.2</td>
<td>Libellé canal</td>
<td>48</td>
</tr>
<tr>
<td>15.3</td>
<td>Mode moyenne</td>
<td>49</td>
</tr>
<tr>
<td>15.4</td>
<td>Verrouillage de la programmation des capteurs</td>
<td>49</td>
</tr>
<tr>
<td>15.5</td>
<td>Limites</td>
<td>50</td>
</tr>
<tr>
<td>15.6</td>
<td>Valeurs de correction</td>
<td>50</td>
</tr>
<tr>
<td>15.7</td>
<td>Mise à l'échelle, réglage du point décimal</td>
<td>50</td>
</tr>
<tr>
<td>15.8</td>
<td>Changement d'unité</td>
<td>51</td>
</tr>
<tr>
<td>15.9</td>
<td>Choix de plage de mesure</td>
<td>51</td>
</tr>
<tr>
<td>15.10</td>
<td>Configuration capteur</td>
<td>53</td>
</tr>
<tr>
<td>15.11</td>
<td>Étalonnage multipoint</td>
<td>53</td>
</tr>
<tr>
<td>15.12</td>
<td>Fonctions spéciales</td>
<td>54</td>
</tr>
<tr>
<td>15.12.1</td>
<td>Facteur de cycle</td>
<td>54</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>15.12.2</td>
<td>Actions en dépassement de limite</td>
<td>54</td>
</tr>
<tr>
<td>15.12.3</td>
<td>Début analogique et fin analogique</td>
<td>55</td>
</tr>
<tr>
<td>15.12.4</td>
<td>Tension minimale d'alimentation de capteur</td>
<td>56</td>
</tr>
<tr>
<td>15.12.5</td>
<td>Fonction de sortie</td>
<td>56</td>
</tr>
<tr>
<td>15.12.6</td>
<td>Canaux de référence</td>
<td>57</td>
</tr>
<tr>
<td>15.12.7</td>
<td>Drapeaux d'éléments</td>
<td>57</td>
</tr>
<tr>
<td>16.</td>
<td>CONFIGURATION DE L'APPAREIL</td>
<td>58</td>
</tr>
<tr>
<td>16.1</td>
<td>Heure et Date</td>
<td>58</td>
</tr>
<tr>
<td>16.2</td>
<td>Libellé appareil</td>
<td>58</td>
</tr>
<tr>
<td>16.3</td>
<td>Langue</td>
<td>58</td>
</tr>
<tr>
<td>16.4</td>
<td>Éclairage et contraste</td>
<td>58</td>
</tr>
<tr>
<td>16.5</td>
<td>Interface, adresse d'appareil et mise en réseau</td>
<td>59</td>
</tr>
<tr>
<td>16.6</td>
<td>Vitesse, format de données</td>
<td>59</td>
</tr>
<tr>
<td>16.7</td>
<td>Commande de scurature</td>
<td>60</td>
</tr>
<tr>
<td>16.7.1</td>
<td>Cadence de mesure</td>
<td>60</td>
</tr>
<tr>
<td>16.7.2</td>
<td>Cycle de scurature</td>
<td>60</td>
</tr>
<tr>
<td>16.7.3</td>
<td>Cycle de sortie</td>
<td>61</td>
</tr>
<tr>
<td>16.8</td>
<td>Hystérésis</td>
<td>61</td>
</tr>
<tr>
<td>16.9</td>
<td>Paramètres de fonctionnement</td>
<td>61</td>
</tr>
<tr>
<td>17.</td>
<td>MODULES DE SORTIE</td>
<td>62</td>
</tr>
<tr>
<td>17.1</td>
<td>Câble de données</td>
<td>62</td>
</tr>
<tr>
<td>17.2</td>
<td>Modules de déclenchement et relais</td>
<td>62</td>
</tr>
<tr>
<td>17.3</td>
<td>Sorties analogiques</td>
<td>64</td>
</tr>
<tr>
<td>18.</td>
<td>RECHERCHE DE DÉFAUT</td>
<td>66</td>
</tr>
<tr>
<td>19.</td>
<td>DÉCLARATION DE CONFORMITÉ</td>
<td>67</td>
</tr>
<tr>
<td>20.</td>
<td>ANNEXE</td>
<td>68</td>
</tr>
<tr>
<td>20.1</td>
<td>Caractéristiques techniques</td>
<td>68</td>
</tr>
<tr>
<td>20.2</td>
<td>Aperçu des produits</td>
<td>69</td>
</tr>
<tr>
<td>20.3</td>
<td>Index</td>
<td>70</td>
</tr>
<tr>
<td>20.4</td>
<td>Vos interlocuteurs</td>
<td>75</td>
</tr>
</tbody>
</table>
3. GÉNÉRALITÉS

Félicitations pour votre achat de cet appareil de mesure ALMEMO® spécial, de génération V7 ! Veuillez noter que cet appareil est conçu exclusivement pour les capteurs numériques standards (plages DIGI, Freq, Inp) ainsi que pour les nouvelles séries D6 et D7. Grâce aux connecteurs brevetés ALMEMO®, l'appareil se configure toujours tout seul et à l'aide des menus et des fenêtres d'aide fournies, la manipulation ne vous posera aucun problème. Par ailleurs, l'appareil permet de raccorder les capteurs et périphériques les plus divers avec de nombreuses fonctions spéciales. Afin de vous familiariser avec le fonctionnement du nouveau capteur D7 et des possibilités étendues de l'appareil V7, vous devriez lire absolument cette notice d'utilisation ainsi que les chapitres correspondants du manuel ALMEMO®. C'est seulement de cette manière que vous évitez toute erreur de manipulation ou de mesure ainsi que tout dommage porté à l'appareil. Pour répondre rapidement à toutes les questions, un index exhaustif des mots-clé se trouve à la fin de la notice et du manuel.

3.1 Garantie

Chaque appareil est soumis à plusieurs essais qualité avant de quitter l'usine. Une garantie de deux ans contre tout défaut de fonctionnement est accordée à compter de la date de livraison. Avant de renvoyer un appareil, veuillez observer les indications données au chapitre Fehler: Referenz nicht gefunden. Recherche des erreurs. S'il devait s'agir effectivement d'une défectuosité, utiliser si possible l'emballage d'origine pour le renvoi et y joindre une description explicite du défaut avec les conditions secondaires associées.

Toute garantie est exclue dans les cas suivants :

- Interventions et modifications non autorisées effectuées par le client sur l'appareil
- Fonctionnement en dehors des conditions environnementales valables pour ce produit
- Utilisation d'une alimentation ou de périphériques non adaptés
- Utilisation non conforme de l'appareil
- Dommages provoqués par décharges électrostatiques ou la foudre
- Inobservation de la notice d'utilisation

Le constructeur se réserve le droit de modifier les caractéristiques du produit en faveur du progrès technique ou en raison des nouveaux composants.
3.2 Éléments livrés
Lors du déballage, s'assurer que l'appareil ne soit pas endommagé et que la livraison est complète :

- Appareil de mesure ALMEMO® 202 avec 3 piles R6 (AA) alcalines,
- la présente notice d'utilisation,
- le manuel ALMEMO®,
- CD avec logiciel ALMEMO-Control et des accessoires utiles

En cas de dommage pendant le transport, conserver l'emballage et informer sans délai le fournisseur.

3.3 Élimination

Le symbole de poubelle à roulettes barrée signifie que ce produit dans l'Union européenne doit être mis dans un recyclage de déchets séparé. Cela vaut tant pour le produit lui-même que pour toutes les pièces d'accessoire identifiées par ce symbole. Ces produits ne doivent pas être éliminés par les déchets ménagers non triés.

- Éliminer les matériaux d'emballage conformément aux prescriptions nationales en vigueur !
- Éliminer les cartonnages, emballages de protection en plastique et matériaux de conservation séparément et de façon appropriée !
- L'élimination de l'appareil (ainsi que les pièces d'appareil et consommables) doit respecter les prescriptions locales d'élimination des déchets ainsi que les lois de protection de l'environnement en vigueur dans le pays d'utilisation.
- Procéder à une élimination adaptée, en particulier des pièces et produits nocifs pour l'environnement. Il s'agit entre autres des plastiques, piles et accumulateurs ou batteries.
- Pour l'expédition, utiliser si possible le matériau d'emballage d'origine.
4. CONSIGNES DE SÉCURITÉ

DANGER Danger de mort, de blessures et de dommages matériels !

Lire soigneusement le mode d'emploi avant la première mise en service !

Respecter les consignes générales de sécurité ainsi que les consignes de sécurité spécifiques, contenues dans les autres chapitres !

Les risques sont avérés dans les cas suivants :

- Non respect du mode d'emploi et de toutes les consignes de sécurité qui s'y trouvent.
- Interventions et modifications non autorisées effectuées par le client sur l'appareil
- Fonctionnement en dehors des conditions environnementales valables pour ce produit
- Utilisation d'une alimentation électrique ou de périphériques non adaptés
- Utilisation non conforme de l'appareil
- Dommages provoqués par décharges électrostatiques ou la foudre

DANGER Danger de mort par tension électrique dangereuse !

Les risques sont avérés dans les cas suivants :

- Utilisation d'une alimentation électrique ou de périphériques non adaptés
- Dommages provoqués par décharges électrostatiques ou la foudre
- Ne pas poser les câbles de capteur à proximité des câbles de courant fort !
- Veillez à une bonne évacuation de l'électricité statique avant de toucher les câbles des capteurs.
Consignes de sécurité

DANGER Avertissement sur les atmosphères ou matériau explosibles !

Il existe des risques d'explosion à proximité de carburants ou de produits chimiques !

Ne pas utiliser l'appareil dans des zones avec des explosifs ou dans des stations services !

4.1 Instructions particulières d'utilisation

- En apportant l'appareil dans les ateliers de l'entreprise depuis un environnement froid, de la condensation peut survenir sur la partie électronique. De plus sur les mesures par thermocouple, de grandes erreurs sont possibles en cas de fortes variations de température. Il faut donc attendre que l'appareil se soit adapté à la température ambiante avant de le mettre en service.
- Lors du raccordement d'adaptateurs secteur, respecter la tension du secteur.
- Respecter la charge maximum de l'alimentation électrique des capteurs.
- Les capteurs avec alimentation ne sont pas à séparation galv. l'un de l'autre.

4.2 Manipulation des piles ou des accumulateurs

Lors de l'insertion des piles/accumulateurs, veiller à respecter la polarité !

Enlever les piles de l'appareil lorsque celles-ci sont vides ou lorsque vous n'avez plus besoin de l'appareil pendant un certain temps, afin d'éviter des dommages dus à des cellules qui fuient.

De même, penser à recharger les accumulateurs à temps !

Ne pas recharger les piles, risque d'explosion !

Veiller à ne pas établir de court-circuit sur les piles/accumulateurs ni à les jeter dans le feu !

Les piles/accumulateurs sont des déchets spéciaux et ne doivent pas être éliminés avec les déchets ménagers !
5. INTRODUCTION

L'appareil de mesure ALMEMO® 202 est le dernier né de la gamme unique en son genre d'appareils de mesures, qui sont tous équipés de la connectique ALMEMO® brevetée par la société Ahlborn. Le connecteur intelligent ALMEMO® offre depuis déjà 20 ans des avantages décisifs lors de la connexion des capteurs et des périphériques, car tous les paramètres sont enregistrés sur EEPROM dans le connecteur et ainsi, toute programmation devient superflue lors du branchement. Tous les capteurs et modules de sortie se connectent sur tous les appareils de mesure ALMEMO® de la même manière.

Cependant, il existe une nouvelle génération de capteurs numériques intelligents ALMEMO®-D7, lesquels, associés aux appareils de mesure V7, s'affranchissent de toutes les limitations actuelles du système. Au lieu de cela, ils peuvent également être exploités directement sur ordinateur, à l'aide d'un câble adaptateur via leur interface série. Indépendamment des plages de mesure de l'appareil, ces capteurs peuvent offrir en tant que système de mesure totalement autonome de 10 canaux max., des grandeurs de mesure toutes nouvelles avec des fonctions de commande et de calcul à volonté ou des compensations, une plage de valeurs jusqu'à 8 chiffres et une vitesse jusqu'à 1000 mes/s. La particularité de ceux-ci est de pouvoir enregistrer ensemble sans problème et dans une même mesure, des grandeurs en haute résolution, lentes et rapide, par des vitesses de scutration individuelles. Le paramétrage des fonctions individuelles de capteur s'effectue à l'aide d'un menu mémorisé dans le connecteur. Pour une meilleure identification, les mnémoniques de plage et les unités ont été étendus à 6 caractères et le libellé du canal à 20 caractères. Cet appareil est spécialement conçu uniquement pour les capteurs numériques. C'est pourquoi parmi les capteurs standards, seuls les capteurs numériques (avec plage DIGI, Freq ou Inp) sont utilisables, ainsi que tous les nouveaux capteurs D6 et D7. Dans tous les cas, la fonctionnalité toute nouvelle sur les appareils V7 est la numérotation de canal. Capteurs et prises vont de 0 à 9, les canaux affichés en décimale derrière également de 0 à 9, c.-à-d. que le 1er capteur possède au maximum les canaux 0.0 à 0.9, le 2ème 1.0 à 1.9 etc.

Malgré tout, le fonctionnement et la programmation de toutes les unités est pratiquement identique. C'est pourquoi les points suivants, valables pour tous les appareils du système de mesure ALMEMO®, sont décrits exhaustivement dans un manuel ALMEMO® spécifique, fourni également avec tout appareil :

Explications détaillées du système ALMEMO® (manuel chap.1),
Aperçu des fonctions et des étendues de mesure des appareils (manuel chap.2),
Tous les capteurs avec notions fondamentales,
utilisation et caractéristiques techniques (manuel chap.3),
Les possibilités de raccordement de vos propres capteurs (manuel chap.4),
Tous les modules de sortie analogiques et numériques (manuel chap.5.1),
Les modules d'interface RS232, USB, Ethernet, FO (manuel chap.5.2),
Tout le système de mise en réseau ALMEMO® (manuel chap.5.3),
Toutes les fonctions et leur manipulation par l'interface (manuel chap.6),
Liste complète d'instructions d'interfaçage avec toutes les images imprimées (man. chap.7),
Prochainement, pour les nouvelles instructions V7 un manuel complémentaire V7 sera disponible.

La présente notice ne présente plus que les caractéristiques et organes de manipulation spécifiques à l'appareil. C'est pourquoi dans de nombreux chapitres il sera fait référence à des explications détaillées données dans le manuel (manuel x.x.x).

5.1 Les fonctions de l'ALMEMO 202
Les appareils de mesure ALMEMO® 202 possèdent 2 entrées mesure, comme évoqué uniquement pour tous les capteurs numériques ALMEMO®. A l'aide des nouvelles séries de capteurs numériques D6 et D7, vous disposez de possibilité de mesure illimitées. Pour sa manipulation, l'appareil est équipé d'un afficheur graphique LCD ainsi que d'un clavier à touches programmables et pavé de curseur. Grâce à des menus (configurables) spécifiques au capteur, l'affichage s'adapte à toutes les applications. Une carte mémoire (carte SD) permet de réaliser une fonction centrale d'acquisition. Sur les deux prises de sortie il est possible de connecter tous les modules de sortie ALMEMO®, tels que connecteur mémoire, sortie analogique, interface numérique, entrée déclenchement ou contacts d'alarme. Plusieurs appareils peuvent être mis en réseau par simple branchement les uns aux autres.

5.1.1 Programmation des capteurs
Les canaux de mesure se programment entièrement automatiquement par le connecteur ALMEMO®. La programmation peut cependant être complétée ou modifiée à volonté par l'utilisateur, tant par le clavier que par l'interface.

Plages de mesure
Malgré la limitation aux capteurs purement numériques, l'appareil permet de solutionner déjà de nombreuses applications, en particulier avec des capteurs complexes. Ainsi sont proposés déjà des capteurs de température (CTN, Pt100), d'humidité avec toutes les grandeurs fonctionnelles (point de rosée, rapport de mélange, pression de vapeur et enthalpie), de pression atmosphérique, d'écoulement (anémomètre à hélice, à fil chaud), de pression et de force ainsi que d'intensité et de tension, mais également des capteurs infrarouge, de CO2 et de conductivité, des capteurs de température de couleur, des récepteurs GPS et une station météo complète. Le nombre de capteurs numériques peut être étendu sans souci, car il n'est pas nécessaire comme jusqu'à présent, de ré-équiper l'appareil en conséquence. Chaque capteur est configuré par son menu interne pour capteurs.

Canaux de fonction
Les valeurs max, min, moyennes ainsi que les différences sur certains points de mesure peuvent être également programmées comme canaux de fonction et être traitées et imprimées comme des points de mesure normaux.
Unité
L'unité (sur 2 caractères pour les V5, jusqu'à 6 caractères pour les D7), peut être changée pour chaque canal de mesure, de sorte qu'à l'écran comme à l'impression, par ex. lorsque l'on connecte un transmetteur, la valeur apparaîtra toujours avec l'unité correcte. La conversion de °C en °F s'effectue automatiquement dans l'unité correspondante.

Libellé de mesure
Pour identifier les capteurs, un libellé alphanumérique est en outre prévu (sur 10 caractères pour les V5, sur 20 pour les D7). Celui-ci apparaît sur tous les affichages de valeurs de mesure, à l'impression ou sur l'écran de l'ordinateur.

Correction de mesure
La valeur mesurée de chaque canal de mesure peut être corrigée en zéro et en pente afin de pouvoir remplacer même les capteurs qui devraient normalement être d'abord ajustés (allongement, force, pH). Compensation du zéro et même partiellement de la pente s'effectuent par simple appui sur touche. De plus, vous pouvez également raccorder des capteurs avec un étalonnage multipoints (voir manuel 6.3.13).

Échelle
A l'aide de la base et du facteur, la valeur mesurée corrigée de tout canal de mesure peut de plus être mise à l'échelle en zéro et en pente. Le réglage de la position du point décimal s'effectue au moyen de l'exposant. Les valeurs de l'échelle se calculent automatiquement à l'aide de la mise à zéro, de la saisie de la consigne ou du menu de mise à l'échelle.

Limites et alarme
Deux limites peuvent être définies pour chaque canal de mesure (1 max et 1 min). En cas de dépassement, un signal d'alarme retentit et à l'aide de modules de sortie relais, des contacts d'alarme sont disponibles et peuvent être affectés même individuellement aux limites. L'hystérésis est de 10 chiffres sur les modèles de série, mais elle peut être réglée de 0 à 99 chiffres.

Verrouillage du capteur
Toutes les données de capteur enregistrées dans l'EEPROM du connecteur peuvent être protégées contre tout accès involontaire à l'aide d'un verrouillage graduel.

5.1.2 Mesure
Jusqu'à 8 canaux de mesure sont au total mis à disposition pour les capteurs standards, à savoir qu'il est possible d'exploiter des capteurs doubles, des capteurs dont l'échelle est différente et des capteurs à canaux de fonction. Tous les capteurs standards activés sont scrutés en continu, selon la « vitesse de lecture » et les données s'affichent à l'écran. Les capteurs D7 possèdent jusqu'à 10 canaux et une vitesse de scuritation spécifique, correspondant à la vitesse de mesure individuelle, pouvant être commandée individuellement via le nouveau cycle de scuritation.
Valeurs de mesure
Les mesures peuvent représentées sur l'afficheur dans plusieurs menus configurables, en deux tailles de caractères ou en graphique à barres. Elles sont acquises automatiquement avec auto-zéro et auto-étalonnage, mais peuvent être corrigées et mises à l'échelle à volonté. Sur la plupart des capteurs, toute rupture de ligne est automatiquement identifiée.

Sortie analogique et mise à l'échelle
Chaque point de mesure peut être mis à l'échelle avec un début analogique et une fin analogique, de sorte que la plage de mesure ainsi définie utilise toute l'étendue d'un graphique à barres ou d'une sortie analogue (2 V, 10 V ou 20 mA). La valeur de mesure de tout point de mesure ou même une valeur programmée peut être envoyée sur la sortie analogique.

Fonctions de mesure
Pour que l'acquisition de mesure soit optimale, certaines fonctions de mesure sont nécessaires sur certains capteurs. Compensation de pression atmosphérique et de température sont déjà effectuées en interne par le capteurs intelligents. Pour les capteurs infrarouge, il est possible de configurer l'émissivité.

Lissage de mesure
Pour liser une mesure instable, vous pouvez programmer un calcul de moyenne flottante de 2 jusqu'à 99 valeurs. Le temps d'établissement de la moyenne dépend ici de la vitesse de balayage et du nombre de canaux actifs. La plupart des capteurs D7 disposent quant à eux pour tous les canaux primaires d'un temps de moyenne spécifique, pouvant se régler dans le menu du capteur.

Valeur max. et min.
A chaque mesure, les valeurs maximales et minimales sont détectées et enregistrées. Ces valeurs peuvent être affichées, sorties et supprimées.

Valeur moyenne
Sur chaque canal il est possible d'effectuer un calcul de moyenne sur une certaine période, sur un cycle ou sur des mesures individuelles.

Mémoire de mesure
Vous pouvez mémoriser manuellement jusqu'à 100 mesures. Ces valeurs peuvent être affichées à l'écran ou sorties sur l'interface.

5.1.3 Commande de scrutation
Afin d'effectuer l'acquisition en numérique des valeurs de mesure des capteurs raccordés, il est nécessaire de scruter en continu les canaux à l'aide d'une commande temporelle de scrutation de la sortie des mesures. Vous pouvez lancer et arrêter une mesure à l'aide de l'interface, d'un signal externe de déclenchement, de l'horloge temps réel ou par franchissements de limite. Pour que la sortie soit cyclique et régulière, vous disposez du cycle normal à partir de 1 seconde. Si une vitesse plus élevée est exigée, la scrutation et la sortie des capteurs standards peut s'effectuer à la vitesse de mesure. Cependant, pour tous les capteurs ensemble, il est prévu le nouveau cycle de scrutation.
qui peut chercher les valeurs de mesure de chaque canal individuellement, avec son propre temps de mesure, s'il est réglé au temps minimum

Date et heure
L'horloge temps réel avec date ou la durée de mesure seule servent à établir le rapport exact de chaque mesure. Pour démarrer ou arrêter une mesure, il est possible de programmer l'heure et la date de début ainsi que l'heure et la date de fin par l'interface.

Cycle de sortie
Le cycle de sortie est programmable entre 1 s et 24 h. Il permet l'édition cyclique des mesures sur l'interface ou en mémoire, ainsi qu'un calcul cyclique de la moyenne.

Facteur de cycle
Le facteur de cycle permet de limiter au besoin l'édition des données provenant de certains canaux et ainsi de limiter le flux de données, en particulier lors de l'enregistrement de valeurs de mesure.

Moyenne sur scutation de points de mesure
Les mesures issues des scrutations de points de mesure peuvent être moyennées au choix sur toute la durée de la mesure ou sur le cycle. Pour éditer et mémoriser de façon cyclique ces valeurs moyennes, il existe des canaux de fonction.

Cadence de mesure
Tous les canaux numériques standards (DIG1 et D6) sont scrutés en permanence à la fréquence de 10 mes/s. En alternative, possibilité de programmer 2,5 mes/s.

Cycle de scutation
Sur l'ALMEMO® 202 il existe en plus le cycle de scutation, effectuant l'acquisition de chaque canal standard et tous les canaux D7 lorsqu'ils offrent une nouvelle valeur de mesure actuelle. Afin d'atteindre une grande vitesse d'enregistrement, il est possible de sortir immédiatement sur l'interface ou un connecteur mémoire toutes les valeurs mesurées ainsi acquises.

Mémoire de mesure
Les appareils ALMEMO® 202 peuvent être équipés d'un connecteur mémoire externe et d'une carte mémoire micro SD pour constituer une centrale d'acquisition de grande capacité. Celui-ci est disponible en accessoire et permet de lire rapidement les fichiers par un lecteur de carte standard.
Au branchement du connecteur mémoire, le menu utilisateur passe de U1 à U2 et dans les menus de fonction, 3 pages supplémentaires avec fonctions de centrale d'acquisition sont libérées.

Ports de commande
Grâce à un adaptateur analogique à relais et déclenchement, vous dispose de 10 sorties relais, en option de 4 sorties analogiques et 2 entrées déclenchement.
Manipulation
Toutes les valeurs de mesure et de fonction peuvent être affichées dans différents menus sur l'écran LCD à matrice à points. Les menus utilisateur sont configurables individuellement pour vos applications sur la base de près de 50 fonctions, textes, lignes et sauts de ligne. La manipulation s'effectue à l'aide de 6 touches (dont 4 touches programmables). Elles vous permettent également de programmer entièrement les capteurs, l'appareil et la commande de scrutation.

Sortie
Tous les rapports de mesure, fonctions de menu ainsi que les valeurs mesurées mémorisées et programmées peuvent être édités sur tout périphérique. Différents câbles d'interface offrent l'accès aux ports RS232, RS422, USB ou Ethernet. Du fait du volume variable de données, le protocole d'interface a du être modifié, à savoir que la sortie ne peut plus s'effectuer qu'au format tableau, qui au besoin peut être exploité directement par tout logiciel tableur.

Mise en réseau
Tous les appareils ALMEMO® sont adressables et peuvent être mis en réseau par simple branchement les uns aux autres à l'aide de câbles réseau. Du fait des protocoles différents, les anciens appareils V5/V6 et les nouveaux appareils V7 doivent cependant être exploités sur des ports COM différents.

Logiciel
Chaque manuel ALMEMO® est fourni avec le programme ALMEMO®-Control. Il permet de programmer complètement les capteurs, de configurer l'appareil de mesure et les menus utilisateur ainsi que de lire la mémoire des mesures. Les mesures en ligne sont également possibles à l'aide du terminal intégré. L'enregistrement des valeurs de mesure des appareils en réseau, l'affichage graphique et le traitement complexe des données s'effectuent à l'aide du logiciel WinControl sous WINDOWS®.
6. MISE EN SERVICE

Connexion des capteurs
Enficher les capteurs sur les prises M0 à M1 (1) voir 8.

Alimentation
Par piles ou adaptateur secteur sur la prise DC (3) voir 7.1, 7.2

Mise sous tension
Appuyer sur la touche ON / PROG (5) voir 7.5

Affichage automatique du dernier menu de mesure voir 11.

Appeler la sélection des menus
par la touche :

Éclairage d'écran marche/arrêt par :

Sélectionner le menu Liste capteurs voir 9.1
par les touches :
Appeler le menu par la touche :

Choisir le capteur (voir 10)
par les touches :

Appeler l'affichage des capteurs par :

Choisir le canal de mesure (voir 11.1.1)
par les touches :
Tous les canaux du connecteur ou les fonctions nécessaires au calcul de la mesure sont affichés.

Fonctions de centrale d'acquisition : (voir 11.5)
enficher le connecteur mémoire sur la prise A2,
Choisir le menu U2 centrale d'acquisition :

Choisir Cycle mémoire avec :
Utiliser le cycle de scrutation :
pour V6, régler « temps de scrutation » avec :
pour D7 régler « temps minimum » avec :
A nouveau cycle de sortie (00:01:00) :
Saisir cycle (voir 9.5) avec :
Quitter le mode programmation :
Lancer - arrêter la mesure avec :

Sortie par l'interface, sur imprimante ou ordinateur :
-Raccorder le périphérique par le câble de données sur la prise A1 (2) voir manuel 5.2

Sélectionner Mémoire libre par :
Éditer mémoire voir 14.5.5
ou commande « P04 » de l'ordinateur
ou commande 'C04' de l'ordinateur

16
ALMEMO 202
7. ALIMENTATION

L'alimentation de l'appareil de mesure peut s'effectuer des manières suivantes :
- 3 piles alcalines R6 (type AA) fournies
- Adaptateur secteur 12V, 1A avec connecteur ALMEMO® ZA1312-NA7
- Câble d'alimentation à sép. galv. (10 à 30 V CC, 0.25 A) ZA2690-UK
- Câble d'alimentation données USB (9 V, 0.2 A) ZA1919-DKUV

Dans notre gamme de produits disponibles, nous proposons les accessoires correspondants.

7.1 Fonctionnement sur pile et contrôle de tension d'alimentation

L'alimentation de l'appareil est assurée de série par 3 piles alcalines AA. Pour une consommation moyenne de 30 mA, celles-ci autorisent un temps de fonctionnement d'env. 100 heures. Si l'éclairage est activé en permanence, cette durée se réduit à env. 50 heures. Cet appareil fonctionnant exclusivement avec des capteurs actifs, il faut toujours tenir compte de la consommation électrique des capteurs. Vous pouvez lire la tension de service actuelle dans le menu Info (voir 10) et ainsi estimer la durée résiduelle de fonctionnement. Lorsque la capacité résiduelle des piles atteint approximativement 10 %, le symbole s'affiche dans la barre d'état ou des touches programmables sur l'afficheur et clignote. Lorsque les piles sont totalement usées, l'appareil se met hors tension à env. 3 V, mais les paramètres réglés sont conservés (voir 7.6). Pour remplacer les piles, mettre l'appareil hors tension puis dévisser le couvercle des piles (6) situé au dos de l'appareil. Lors de l'insertion des piles, veiller à la bonne polarité.

7.2 Fonctionnement sur secteur

Pour l'alimentation externe de l'appareil, raccorder préférentiellement l'adaptateur secteur ZA 1312-NA7 (12 V/1 A) sur la prise DC (3). Veiller alors à respecter la tension secteur ! La tension des capteurs augmente à env. 12 V.

7.3 Alimentation externe en tension continue

La prise DC (3) peut également recevoir une autre tension continue de 6 à 13V (200mA min.). Le raccordement s'effectue par un connecteur ALMEMO® (ZA1312-FS8). S'il faut toutefois une séparation galvanique entre alimentation et capteurs ou bien une plage de tension d'entrée supérieure 10 à 30 V, alors le câble d'alimentation à séparation galvanique ZA2690-UK est nécessaire. L'appareil peut ainsi fonctionner sur des réseaux embarqués de 12 ou 24 V. En alternative pratique, il est également possible d'utiliser un câble USB d'alimentation/données ZA1919-DKU5, qui établit simultanément une liaison interface avec l'ordinateur.
7. Alimentation

7.4 Alimentation capteur
Sur les bornes – et + dans le connecteur ALMEMO®, une tension d'alimentation de capteur de 6, 9 ou 12 V (fusible auto-cicatrisant courant total 500 mA) est disponible et se règle automatiquement selon l'alimentation minimale de capteur. En alimentation secteur 12 V, la tension d'alimentation des capteurs augmente d'une manière générale à 12 V.

7.5 Mise sous tension, hors tension, réinitialisation
Pour mettre sous tension l'appareil, appuyer sur la touche **ON PROG** (5) située au milieu des touches de curseur. L'afficheur affiche d'abord toujours le dernier menu de mesure sélectionné.

Pour **mettre hors tension** l'appareil, appuyer plus longtemps sur la même touche **ON PROG**. A la mise hors tension, l'horloge temps réel reste active et toutes les valeurs mémorisées et les réglages sont conservés (voir 7.6).

Si, en raison de perturbations (par ex. charges électrostatiques ou panne de pile), l'appareil se comporte de façon erronée, il est possible de le réinitialiser.

Cette **Réinit** s'obtient en maintenant la touche **F1** enfoncée à la mise sous tension. Si vous désirez mettre toute la configuration de l'appareil avec la désignation de l'appareil, les menus utilisateur, la séquence de scrutation etc. à l'état tel qu'à la livraison, il faut appuyer sur la touche **F2** à la mise en marche.

De nombreux paramètres seront alors supprimés ou reviendront à leurs valeurs par défaut : Langue Allemand, éclairage éteint, adresse appareil 00, hystérésis 10, cadence de mesure 10 mes/s. Seule la programmation des capteurs dans les connecteurs ALMEMO® ne change pas.

7.6 Mise en mémoire tampon des données
La programmation des capteurs est sauvegardée et protégée contre les pannes de courant dans l'EEPROM du connecteur du capteur, l'étalonnage et les paramètres programmés pour l'appareil le sont dans l'EEPROM de l'appareil. Heure, date et mémoire des valeurs individuelles sont conservées à la mise hors tension de l'appareil et au remplacement des piles, tant que les piles offrent une tension d'env. 2,7 V.
8. RACCORDEMENT DES CAPTEURS

Sur les entrées M0 à M1 (1) de l'appareil de mesure ALMEMO® 202, parmi les capteurs ALMEMO® seuls les capteurs numériques sont utilisables, c.-à-d. parmi les capteurs standards, seuls ceux dont la plage est DIGI, Freq ou Inp, et de plus tous les nouveaux capteurs D6 ou D7. Tous les capteurs de série à connecteurs ALMEMO® sont programmés systématiquement avec plage de mesure et unité, et peuvent de ce fait se connecter sans formalités sur toute prise d'entrée. Un détrompage mécanique garantit que capteurs et modules de sortie ne puissent être connectés que sur la prise adéquate. En outre, les connecteurs ALMEMO® possèdent deux leviers de verrouillage qui s'enclenchent lors du branchement sur la prise et évitent tout débranchement en tirant sur le fil. Pour retirer le connecteur, il faut appuyer sur les deux leviers sur les côtés.

8.1 Capteurs standards (V5)

Les capteurs ALMEMO® standards (V5) ont un boîtier gris clair. Ils tirent leur intelligence d'une 2k-EEPROM située dans le connecteur, dans laquelle sont mémorisés tous les paramètres des canaux et pour que l'appareil soit entièrement programmé lorsqu'il est branché. Les capteurs numériques avec les plages Fréquence, Impulsion ou DIGI renferment déjà un microcontrôleur qui transmet des signaux numériques par bus I²C à l'appareil. Le traitement des valeurs mesurées s'effectue en synchronisme avec la cadence de mesure, à une résolution de ±65000 max., entièrement dans l'appareil.

8.2 Capteur D6

Les capteurs ALMEMO® D6 possèdent un boîtier gris clair-foncé et sont déjà des modules de mesure entièrement autonomes pour les capteurs numériques et aussi analogiques pouvant, indépendamment de l'appareil, gérer de nouvelles plages de mesure avec des traitements spéciaux de valeurs de mesure et des compensations. Les capteurs D6 sont lors du traitement des valeurs de mesure, excepté étalonnage multipoint et lissage, encore entièrement compatibles avec les capteurs standards, mais la configuration de plage et le paramétrage peut, à l'aide du présent appareil V7, s'effectuer dans le menu « Configuration capteur » (voir 15.10 Fehler: Referenz nicht gefunden) ou directement sur le PC à l'aide d'un câble adaptateur USB.

8.3 Capteur D7

Les capteurs ALMEMO® D7 ont un boîtier rouge foncé et sont également des modules de mesure autonomes pour les capteurs numériques et analogiques, mais possédant des propriétés encore améliorées. La cadence de mesure peut valoir entre 1 milliseconde et plusieurs minutes, la résolution jusqu'à 8 chiffres. Le nombre de canaux par capteur a été étendu à 10 avec une nouvelle numérotation, à 10 000 par appareil. Les libellés de canal peuvent com-
8. Raccordement des capteurs

porter jusqu'à 20 caractères, les unités jusqu'à 6 caractères. Dans les capteurs D7, il est en outre possible de lisser en interne jusqu'à 4 canaux primaires simultanément avec le temps de réalisation de la moyenne. Pour régler chacun des paramètres individuels (par ex. plages, temps de moyenne), il existe un menu spécial « configuration de capteur » (voir 15.10), fourni par le capteur. Le traitement de la valeur de mesure s'effectue entièrement dans le capteur et les données ne sont plus transmises à l'appareil par le bus I²C, mais uniquement par l'interface série. C'est pourquoi, et en raison du format étendu des données, les capteurs D7 ne peuvent plus être exploités que sur un appareil V7 ou directement sur l'ordinateur.

8.4 Entrées de mesure et canaux supplémentaires

L'appareil de mesure ALMEMO® 202 possède 2 entrées M0 et M1 (1), auxquelles sont affectés selon la nouvelle numérotation de canal les canaux de mesure M0.0 à M1.0. Les capteurs standards peuvent au besoin offrir jusqu'à 4 canaux (M0.0 à M0.3, M1.0 à M1.3 etc.), les capteurs D7 au maximum 10 (M0.0 à M0.9, M1.0 à M1.9 etc.). Les canaux supplémentaires sont surtout utiles pour les capteurs d'humidité avec toutes les grandeurs de mesure d'humidité (température/humidité/point de rosée/rapport de mélange) ou pour les canaux de fonction. Au besoin il est également possible de programmer un capteur avec plusieurs plages ou échelles ou bien, si l'affectation des prises le permet, on peut aussi associer 2 à 3 capteurs dans un même connecteur. Les canaux internes à l'appareil ne sont plus prévus sur cet appareil.

Sur l'appareil de mesure, l'affectation des voies est ainsi la suivante :

8.5 Isolement

Les capteurs numériques fonctionnent tous sur l'alimentation commune des capteurs et c'est pourquoi ils sont reliés entre eux de façon galvanique. Tant que les capteur sont eux-mêmes isolés ou fonctionnent de manière isolée, cela ne pose aucun problème. Mais si 2 signaux électriques (courant, tension) sont exploités, il est possible d'insérer le câble adaptateur ZAD700-GT car il
offre une séparation galvanique pour l'alimentation électrique et les lignes de données. L'alimentation est isolée à l'aide du transformateur de l'adaptateur secteur ou à l'aide d'un convertisseur CC/CC sur le câble de liaison ZA2690-UK. Les câbles de données et de déclenchement sont équipés d'optocoupleurs. Sur les câbles de sortie analogiques sans séparation galvanique, l'appareil d'enregistrement ou les capteurs doivent être hors potentiel.
9. Affichage et touches

9.1 Afficheur et choix du menu
L'afficheur (4) de l'appareil ALMEMO 202 se compose d'une matrice LCD de 128x64 points ou de 8 lignes de 8 points de hauteur.

Dans la sélection de menus (voir 10) vous disposez des menus suivants :
3 menus de mesure pour l'acquisition des mesures (voir 11),
des menus de fonction supplémentaires (voir 14), accessibles également depuis tout menu de mesure par la touche <FCT>.
3 menus de programmation pour programmer les capteurs (voir 15), les paramètres de l'appareil (voir 16) et les modules de sortie (voir 17),
Menu info (voir 10) pour les informations sur les appareils et capteurs.

Selon le menu, lancer le choix du menu par les touches :
Allumer ou éteindre l'éclairage de l'écran (voir 16.4) Arrêter l'appareil par la touche :
 Sélection des menus par les touches :
Appel du menu sélectionné par la touche :
Appel des informations appareil les plus importantes :

9.2 Affichage de la mesure et des symboles de contrôle
Le menu des capteurs s'obtient en appuyant dans la liste des capteurs sur la touche M◄◄. Là s'affiche le point de mesure sélectionné, la mesure et éventuellement des fonctions importantes pour la mesure, ainsi que éventuellement d'autres canaux de mesure du connecteur respectif.

Pour la mesure, divers symboles de contrôle sont disponibles : symboles :
aucun capteur dispo, point de mes. désactivé :
Mesure relative par rapport à une valeur de référence :
Mesure modifiée avec correction capteur ou échelle :
Calcul de moyenne en cours :
Fonction sortie Diff, Hi, Lo, M(t), Alerte (voir 15.12.5) :
Compensation :

22 ALMEMO 202
Affichage de la mesure et des symboles de contrôle

Dépassement de limite max ou min : ▲ ou ▼ clignote
Dépassement de plage de mesure : Affichage valeur maximale O clignote
Soupassement de plage de mesure : Affichage valeur minimale U clignote
Rupture ligne/tension capteur Lo : Affichage « -.-.- » B clignote / L clignote
Tension de pile < 3.4 V, capacité résiduelle < 10 % ■ clignote

Dans le menu Commande de scurutation ou Centrale d’acquisition (voir ci-dessous) apparaissent en plus dans la barre d’état supérieure les symboles suivants en contrôle de l’état de l’appareil :

Mesure arrêtée ou démarrée : ll ou ◆
Valeurs placées en mémoire des valeurs individuelles : MEM
Scrutation des points lancée avec sortie sur interface : COM
Scrutation des points lancée avec mémorisation : REC
Horaire de début ou de fin de la mesure programmé : l ou ◆l
État des relais (module de sortie ext.) repos ou excité : R-- ou R01
Éclairage d'écran activé ou pause : * ou ®
État de la pile : plein, à moitié, vide :

9.3 Touches de fonction

La fonction des touches (5) F1, F2 et des touches du curseur ◄, ► peut être différente dans chaque menu. Elle est indiquée dans la barre la plus basse de l'afficheur par des mnémoniques (touches programmables). Dans la notice, les mnémoniques des touches programmables sont mis entre crochets, par ex. <START>.

Dans tous les menus mesure (voir à droite) se trouvent les touches de fonctions suivantes :

Choix du pt de mes par les touches de curseur : ▲ ou ▼ ...
En soutient, le symbole de touche programmable s'allume au milieu :
Appel du choix de menu de fonction
Navigation dans de multiples menus de fonction :
9. Affichage et touches

Navigation dans de multiples menus de programmation: \(<\text{P}\text{P}>\) ou \(<\text{P}\text{P}~>\)

Retour vers la sélection de menus :
\(<\text{MENU}>\) ou \(<\text{M}<\text{M}>\)

Retour au dernier menu de **Mesure** :
\(<\text{M}<\text{M}>\)

Les touches programmables suivantes n'apparaissent que lorsque vous avez sélectionné un menu de fonction ou un menu de programmation (par ex. programmation des capteurs).

Dans le menu mesure, retour au menu de **Fonction** par :
\(<\text{F}~\text{F}~>\) ou \(\text{F}\text{F}>\)

Dans le menu mesure, retour au dernier menu de **Programmation** :
\(<\text{P}<\text{P}>\) ou \(\text{F}1\)

9.4 Sélection de fonction

Chaque menu se compose d'une série de fonctions à sélectionner ou à programmer le cas échéant lors du fonctionnement.

Avec certaines fonctions, une fenêtre d'aide apparaît.

Sélection des fonctions par la touche :

le premier paramètre modifiable apparaît en inversé :

25.45

En soutien, le symbole de touche prog. apparaît alors :

\(<\text{F}~\text{F}>\) pour choix de fonction

Saut à la fonction suivante :

\(\text{F}1\) ou \(\text{F}2\) ou

Suivant la fonction, les touches \(\text{F}1\), \(\text{F}2\) ou

\(<\text{ZERO}>\) ont la signification requise, p.ex. :

Mise à zéro de la mesure

Compensation de mesure

Effacer valeur max. et min.

Effacer mémoire individuelle

Effacer carte mémoire

Réglage direct des paramètres

Annuler la fonction

9.5 Saisie des données

Si un paramètre programmable est sélectionné (voir 9.4), vous pouvez supprimer directement la valeur ou la reprogrammer.

Sélection des valeurs programmées par la touche :

Pour programmer appuyer sur la touche :

\(<\text{CLR}>\)

PROG
Vous êtes maintenant en mode programmation : milieu ligne touches prog
le curseur clignote sous le premier chiffre à saisir Base : 0025.0 °C

Augmenter le chiffre sélectionné par :

Diminuer le chiffre sélectionné :

Changer le signe des nombres par :

Sélection du chiffre suivant :
le curseur clignote sous le deuxième chiffre Base : 0025.0 °C

Retour au chiffre précédent :

Chaque chiffre se programme comme le premier
Fin de la saisie :
Annulation de l'opération de programmation :

Pour saisir des caractères alphanumériques choisir le groupe :
Lettres majuscules par la touche :
Lettres minuscules par la touche :
Chiffres par la touche :
Signes par la touche :

Lors de la saisie de certains paramètres tels que plage de mesure, variante de relais etc. la procédure indiquée permet de sélectionner et de programmer non des caractères mais des désignations complètes.
10. SÉLECTION DE MENUS

Par la sélection du menu (voir 9.1) vous obtenez 3 menus de mesure
1 M Affichage liste des capteurs voir 11.1
2 M Liste Points de mesure voir 11.3
3 M U1 Cde de scrutation voir 11.4, 13
4. une série de F menus de fonction voir 14 et 3 menus programmation :
5 P Programmation des capteurs voir 15
6 P Configuration d’appareil voir 16
7 P modules de sortie voir 17 s’il en existe

Les principales données d’appareil s’obtiennent avec la touche : INFO

En cas de questions, vous trouvez ici le type d’appareil exact avec la version du micrologiciel, les options et le numéro de série. Vous pouvez sélectionner tout capteur par les touches ▲/▼ et l’identifier par son n° de référence (si existant). Pour vérifier l’alimentation, vous pouvez demander la tension de la pile et celle de la sonde (capteur). Vous trouverez en outre toute sorte d’aide grâce à l’adresse web.

Après sélection de la Liste de capteurs avec affichage de tous les capteurs connectés, choisir à l’aide des touches ▲/▼ un capteur et vous avez alors 3 possibilités :
1 Avec la touche <M◄◄ vous arrivez sur le menu universel de mesure Affichage de capteur (voir 11.1).

2 La touche <KONF> permet d’obtenir le menu Configuration de capteur, lequel est spécialement mis à disposition par le capteur D6 ou D7 sélectionné, pour programmer ses plages individuelles ou paramètres (voir 15.10).

3 Avec les touches PROG ou ► s’ouvre le menu Canaux de capteur avec tous les canaux du capteur sélectionné. En sélectionnant ici un canal, il est à nouveau possible d’arriver avec <M◄◄ sur Affichage de capteur ou avec <P► sur la programmation de capteur (voir 15).
11. MENUS DE MESURE

Outre l'**affichage de capteur** donnant toutes les mesures d'un capteur avec dans certains cas les valeurs de compensation, le menu **Liste Points de mesure** (voir 11.3) offre un bon aperçu de tous les canaux de mesure en combinaison avec les principales données. Pour sortir les mesures, avec certaines cadences de scrutation et un cycle de sortie, sur interface ou en mémoire, sélectionner le menu utilisateur **U1 Commande de scrutation** ou **U2 Centrale d'acquisition**. Si ceci ne satisfait pas à vos exigences, vous pouvez également composer vous-même le menu utilisateur à partir de 50 fonctions (voir 13). Vous pouvez en outre affecter à chaque menu de mesure différentes fonctions grâce à des menus de fonctions (voir 14).

11.1 Menu Affichage des capteurs

Par la liste des capteurs, vous obtenez le menu intelligent **Affichage de capteur**. Dans la première ligne apparaît la valeur de mesure, sur 7 chiffres max. en grand format, le point de mesure et l'unité sur 6 chiffres max. En-dessous apparaissent le libellé du point de mesure sur 20 caractères max. et quelques symboles (voir 9.2) en contrôle de l'état de la mesure. Selon la plage de mesure, toutes les fonctions importantes pour la mesure s'affichent ensuite (par ex. valeurs de compensation) ainsi que les canaux de mesure supplémentaires éventuels du capteur correspondant.

Des fonctions de mesure supplémentaires peuvent être réalisées à l'aide de menus de fonction (voir 14).

Le caractère **<M>** au milieu de la ligne de touches programmables signifie que les touches ▲ et ▼ permettent de sélectionner le point de mesure.

11.1.1 Sélection d'un canal de mesure

La touche ▲ permet de sélectionner successivement tous les canaux de mesure actifs et la mesure actuelle s'affiche. En appuyant sur la touche ▼, le canal précédent réapparaît. Le canal de mesure sélectionne simultanément le canal d'entrée correspondant.

Lors du choix, noter que sur cet appareil V7 la numérotation de canal a changé et que les canaux apparaissent par capteur.

Augmenter le canal de mesure par la touche : ▲
Diminuer le canal de mesure par la touche : ▼

11.2 Correction de la mesure et compensation

Pour atteindre une précision de mesure maximum, vous pouvez déjà corriger...
le zéro des capteurs dans le menu **Affichage de capteur**. Pour la compensation universelle de tous les capteur il existe les menus de fonction **Compensation à deux Points** voir 14.3 avec 2 valeurs réelles et 2 consignes ainsi que le menu **Échelle** (voir 14.4). Les capteurs qui dépendent de la température ambiante ou de la pression atmosphérique sont déjà compensés en interne sur les capteurs D6 et D7 et les valeurs s'affichent dans l'**affichage de capteur** (voir 11.2.2).

11.2.1 Mise à zéro mesure

Une fonction très utile permet de mettre à zéro la mesure à certains endroits ou à des heures précises pour observer ensuite uniquement l'écart par rapport à cette valeur de référence. Après avoir sélectionné la fonction Valeur de mesure, la touche programmable **<ZERO>** apparaît. Cette touche permet de mémoriser en tant que **Valeur de base** la mesure affichée (voir 15.7) et de la mettre ainsi à zéro.

Sélectionner la fonction **Mesure** (voir 9.4) :

Fonction **Mise à zéro mesure** avec :

La mesure affiche ensuite :

La valeur de base comporte la mesure :

Annuler la mise à zéro en sélectionnant :

Si la fonction est verrouillée (voir 15.4), la valeur de base n'est pas mémorisée dans le connecteur, mais uniquement temporairement en mémoire vive jusqu'à la mise hors tension. Cet état s'affiche à l'écran à l'aide du symbole **REL**, sinon c'est le signe ❌ qui s'affiche.

Si vous voulez éviter entièrement la fonction Mise à zéro, vous devez verrouiller le canal au niveau 6.

11.2.2 Compensation de pression atmosphérique

Certaines grandeurs de mesure dépendent de la pression atmosphérique ambiante, de sorte qu'en cas d'écart important par rapport à la pression normale de 1013 mbar, des erreurs de mesure peuvent survenir :

par ex. erreur par 100 mbar :

<table>
<thead>
<tr>
<th>Grandeur</th>
<th>Plage de compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidité psychromètre</td>
<td>env. 2 % 500 à 1500 mbar</td>
</tr>
<tr>
<td>Rapport de mélange capa.</td>
<td>env. 10 % pression vapeur PV jusqu'à 8 bar</td>
</tr>
<tr>
<td>Pression dynamique</td>
<td>env. 5% 800 à 1250 mbar</td>
</tr>
<tr>
<td>Saturation O₂</td>
<td>env. 10 % 500 à 1500 mbar</td>
</tr>
</tbody>
</table>

Il faut en particulier cas d'utilisation à une certaine altitude, tenir compte de la pression atmosphérique (env. -11mb/100m au dessus niv. mer).

Tous les capteurs D6 ou D7, dont les grandeurs de mesure dépendent de la
Correction de la mesure et compensation

pression atmosphérique, intègrent leur propre capteur de pression atmosphérique qui est automatiquement utilisé pour les compensations de pression atmosphériques. Cette valeur est normalement disponible comme canal de mesure, mais s’affiche également dans le menu **Affichage de capteur** comme compensation de pression atmosphérique pour les grandeurs de mesure correspondantes.

Affichage d'une compensation de pression atmosphérique mesurée dans le menu : CP.

11.3 Menu Liste des points de mesure

Le meilleur aperçu possible de tous les points de mesure avec les mesures et valeurs de fonction s'obtient dans le menu **Liste des Points de mesure**.

Ce menu peut se combiner avec des fonctions choisies :

- Au 1er appel, la liste apparaît avec 6 valeurs de mesure, unité et plage :
- Un certain nombre de fonctions peuvent être attribuées à la mesure avec la touche :
- mesure avec unité sur 6 caractères et sur 20 car. max un **Commentaire** :

<table>
<thead>
<tr>
<th>Points de mesure</th>
<th>Étendue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0: 1234.567 °C</td>
<td>dB</td>
</tr>
<tr>
<td>0.1: 11.17 ms</td>
<td>pH</td>
</tr>
<tr>
<td>0.2: 1234 mV</td>
<td>%RH</td>
</tr>
<tr>
<td>1.0: 15.36 °C</td>
<td>ts</td>
</tr>
<tr>
<td>2.0: 1.5 °C</td>
<td>td</td>
</tr>
<tr>
<td>2.1: 478.9 g/kg</td>
<td>Dr</td>
</tr>
</tbody>
</table>

Le meilleur aperçu possible de tous les points de mesure avec les mesures et valeurs de fonction s'obtient dans le menu **Liste des Points de mesure**.

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : Étendue</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 423.12 g/m³ DIGI ...</td>
</tr>
</tbody>
</table>

Liste des Pts de mes. : Valeur max.

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : Valeur max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 23.12 °C 32.67</td>
</tr>
</tbody>
</table>

Liste des Pts de mes. : Valeur min.

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : Valeur min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 23.12 °C 19.34</td>
</tr>
</tbody>
</table>

Liste des Pts de mes. : Valeur moyenne

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : Valeur moyenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 23.12 °C 25.45</td>
</tr>
</tbody>
</table>

Liste des Pts de mes. : seuil max

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : seuil max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 23.12 °C 30.00</td>
</tr>
</tbody>
</table>

Liste des Pts de mes. : seuil min

<table>
<thead>
<tr>
<th>Liste des Pts de mes. : seuil min</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 : 23.12 °C 20.00</td>
</tr>
</tbody>
</table>

Sélectionner d'autres points de mesure avec :<M> : ▲ ou ▼ ...

ALMEMO® 202 29
11. Menus de mesure

11.4 Menu utilisateur U1 Commande de scrutation

Sans connecteur mémoire, le menu utilisateur U1 Commande de scrutation permet, à l'aide des paramètres Cycles de sortie et Cycle de scrutation et selon le capteur, d'effectuer une scrutation vraiment individuelle et une édition cyclique correspondante des valeurs de mesure, par l'interface, sur un ordinateur. Les paramètres de scrutation sont détaillés au chap. 14.5.6. Vous trouverez comment sont constitués individuellement les menus utilisateurs de l'application, selon l'utilisateur, au chap. 13.

Saisie du cycle de sortie, U sortie actif : Cycle de sortie : 00:10:00 s U
Saisie du cycle de scrutation (voir 9.5) : Cycle de scrutation : 00.100 s -
Commutation de la sortie sur cycle de scrutation : <ON> 00.100 s [2
Démarrage d'une mesure cyclique (si le cycle >0) : <START> voir 12

11.5 Menu utilisateur U2 centrale d'acquisition

Si vous branchez un connecteur mémoire sur la prise A2, le menu utilisateur U1 Cde de scrutation passe automatiquement au menu utilisateur U2 Centrale d'acquisition. Vous pouvez utiliser le menu de façon autonome ou comme tout menu de mesure, associé au menu Fonctions de centrale d'acquisition (voir 14.5).

L'état de l'appareil est indiqué par quelques symboles dans la barre d'état (voir 9.2). L'acquisition cyclique s'obtient par le Cycle mémoire. Le cycle mémoire dépend de l'activation ou non de la mémoire dans les fonctions de centrale d'acquisition, pour le cycle de sortie ou pour le cycle de scrutation (voir 14.5.6). Mais cette commutation peut également s'effectuer confortablement dans le présent menu, à l'aide des touches programmables. Il est possible de visualiser la mémoire disponible dans la fonction Mémoire libre (voir 14.5.5).

Cycle mémoire comme cycle de sortie avec enregistrement : Cycle mémoire : 00:00:02 s
Pour V6, régler sur cycle de scrutation « temps de scrutation » avec : <SCANT> voir 16.7.2
Pour D7, régler sur cycle de scrutation « temps minimum » avec : <MIN> voir 16.7.2
Retour au cycle de sortie (00:01:00) avec : <RESET> voir 16.7.3
Démarrage d'une mesure cyclique (si le cycle >0) : <START> voir 14.5.4
Scrutation manuelle des mesures (si le cycle=0) : <MANU> voir 14.5.3
12. SCRUTATION DES MESURES ET SORTIE

Effectuer l'acquisition des mesures de tous les canaux de mesure en continu, enregistrer les valeurs max et min, contrôler les dépassements de limite puis les sortir sur interface ou en mémoire nécessite de scruter les canaux de mesure en permanence. Sur les capteurs standards, cela s'effectue à la « cadence de mesure » (normale 10 mes/s, voir 16.7.1). Concernant les nouveaux capteurs D7, il existe en plus un « cycle de scrutation » supérieur (voir 16.7.2), qui effectue l'acquisition des capteurs standards mais aussi de tous les capteurs D7 avec leurs vitesses de mesure toutes spécifiques. La sortie peut s'effectuer simultanément par ce « cycle de scrutation » ou en alternative à intervalles cycliques plus importants (voir 16.7.3). Pour certaines applications, les sorties sont aussi possibles en manuel, à certains instants.

Édition cyclique

Pour les éditions (ou sorties) cycliques sur interface ou en mémoire, soit le « cycle de sortie », soit le « cycle de scrutation » doit être programmé et la sortie être configurée en conséquence (voir 14.5.6). Après le départ, toutes les scrutations de mesures sont sorties par cycle en mode tableau (voir manuel 6.5.1.3).

Lancer la scrutation cyclique des points de mesure par la touche : <START>

Ensuite, la temporisation du cycle décrément jusqu'au cycle suivant.

Arrêter la scrutation cyclique des points de mesure par la touche : <STOP>

Édition unique

Si le cycle de sortie est effacé, alors la touche <MANU> permet de déclencher une scrutation unique de canal de mesure (voir manuel 6.5.1.1).

Sortie manuelle des points de mesure, unique :

A tout nouvel appui sur la touche, les mesures sont traitées de la même manière avec l'heure de mesure correspondante.
13. MENUS UTILISATEUR

Malgré la combinaison flexible des menus de mesure et de fonction (voir 14) il existe des applications pour lesquelles une composition individuelle des fonctions serait souhaitable. Vous pouvez donc configurer le menu utilisateur **U1 Cde de scrutation** ou **U2 Centrale d’acquisition** (voir 11.5) de façon totalement libre grâce au logiciel ALMEMO-Control. A partir de la liste de fonctions suivante, vous pouvez donc placer les fonctions nécessaires dans l'ordre qui vous convient à l'écran tant que l'espace de 7 lignes disponibles est suffisant.

13.1 Fonctions

<table>
<thead>
<tr>
<th>Fonctions</th>
<th>Affichage:</th>
<th>Touches:</th>
<th>Commande:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur mesure petite</td>
<td>00 : 234.5°C Température</td>
<td>ZERO</td>
<td>ADJ</td>
</tr>
<tr>
<td>Valeur mesure moyenne</td>
<td>00 : 1234.5 °C</td>
<td>ZERO</td>
<td>ADJ</td>
</tr>
<tr>
<td>3 lignes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesure graphique à barres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 lignes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limite max (voir 15.5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limite min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur de base (voir 15.7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facteur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zéro (voir 15.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pente</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Début analogique (voir 15.12.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fin analogique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage (voir 15.9)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur max (voir 14.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur moyenne (voir 14.2.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycle de sortie (voir 16.7.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heure, date (voir 16.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode moy.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadence de mesure : (v. 16.7.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temporisation cycle (voir 12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de moyenne (v. 14.2.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plage, commentaire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre :</td>
<td>00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIGI Température H H</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.2 Configuration des menus utilisateur

Dans le choix des menus, sélectionner le menu utilisateur U1

Pour configurer l'appareil, le raccorder à votre PC par un câble de données et lancer le logiciel ALMEMO-Control fourni.

En cliquant avec la souris sur : Parcourir réseau
vous accédez à la liste des appareils.

Sélectionner l'appareil et appuyer sur : Programmer menus utilisateur

Par Glisser-Déposer, tirer les fonctions du côté gauche vers la fenêtre de menu à droite.

Pour toutes les fonctions relatives à la mesure (par ex. valeurs max., moyenne, graphique en barres), vous devez d'abord insérer la mesure du point de mesure, puis les fonctions correspondantes !

Insérer un titre de menu significatif :

Titre menu utilisateur

Enregistrer dans l'appareil le menu ainsi terminé, dans U1 à l'aide de :

Enregistrer menu, U1, OK

Vous pouvez également mémoriser tous les menus dans le PC et les charger à nouveau si besoin.
Exemple de menu utilisateur graphique à barres configuré

Par le logiciel ALMEMO-Control il est possible de configurer par ex. un menu utilisateur **Graphique à barres**. Les fonctions « Valeur mesure petite » et « Graphique à barres » permettent d'afficher 2 voies avec valeur de mesure et graphique à barres.

Sélection du point de mesure :
Le 1er canal de mesure est toujours le point de mesure sélectionné.
Comme dans chaque menu, vous pouvez le sélectionner directement avec :

![Image de menu utilisateur graphique à barres](image)

Pour modifier les autres canaux, sélectionner le point de mesure comme fonction à l'aide des touches :

Pour changer maintenant le point de mesure sélectionné avec :

Pour régler la **plage d'affichage** se servir des fonctions **Début analogique** et **Fin analogique** du menu **Fonctions spéciales** (voir 15.12.3). Vous pouvez également les saisir directement sur l'axe après sélection par les touches **PROG** et **...** (voir 9.5).
14. MENUS DE FONCTION

Pour maîtriser les applications individuelles, vous pouvez affecter à chaque menu de mesure un menu de fonction de la liste ci-contre. Lors de la mesure, vous pouvez à tout moment basculer entre le menu de mesure et de fonction.

Appeler les options du menu de fonction
dans la sélection de menus, voir 10
ou dans les menus de mesure et de fonction à l'aide de la touche: <FCT>
Sélectionner le menu de fonction par les touches : ▼ et ► ou PROG
Supprimer le menu de fonction :
Navigation dans de multiples menus de fonction :
Commuter entre menus de Fonction et de Mesure :

14.1 Max, min et mémoire de valeurs individuelles

Le menu de fonction Max-min, mém. Val. indiv. indique la mesure, les valeurs max et min détectées en continu au point de mesure sélectionné, ainsi qu'une mémoire de 100 valeurs individuelles.

Valeurs max et min :
Fonction Min et Max :
Pour effacer, sélectionner la fonction (voir 9.4) :
Supprimer valeurs max., min. et moyennes de tous canaux :
Comme la mesure est effectuée en permanence, la mesure actuelle apparaît immédiatement après chaque suppression. Les extrêmes sont supprimés à chaque démarrage d'une mesure, si l'appareil est configuré en conséquence (réglage par défaut, voir 16.9).

Mémoire des valeurs individuelles :
Chaque valeur de mesure de tout canal quelconque peut être mémorisée par simple appui sur une touche. Elle s'affiche avec l'unité et le numéro de position en fonction MEM et dans la ligne d'état apparaît également MEM. Au choix, vous pouvez effacer la dernière valeur ou la mémoire entière. Toutes les données mémorisées sont représentées sur l'écran ou éditées en tant que liste sur l'interface.

Mémoriser la mesure actuelle par la touche :
Affichage de la mémoire avec position :
Après choix de la fonction, supprimer la dernière position par :

ALMEMO® 202
14. Menus de fonction

Supprimer toutes les valeurs mémorisées par la touche : \(<\text{CLRM}\>\)
Afficher toutes les valeurs mémorisées par la touche : \(<\text{LISTM}\>\) et \(<\text{F} \leftrightarrow \text{..}\>\)
Éditer toutes les valeurs mémorisées par : \(<\text{PRINT}\>\)

Instructions d'interface :
Sauvegarde d'une mesure : S-4
Sortie des données mémoire : P-04
Memory :
- P01 : 0.0 : +022.12 °C
- P02 : 0.0 : +022.12 °C
- P03 : 1.0 : +0039.9 %H
- P04 : 1.0 : +0039.9 %H
- P05 : 2.0 : +0007.6 °C

Effacement de la mémoire : C-04

14.2 Calcul de moyenne

La **valeur moyenne** de la mesure sert dans toute une série d'applications :
- par ex. stabilisation d'une mesure à forte variation (vent, pression etc.)
- la vitesse moyenne d'écoulement dans une gaine d'aération
- valeurs moyennes horaires ou journalières de données météo (temp., vent etc.)
- idem pour les consommations (courant électrique, eau, gaz etc.)

La valeur moyenne \(\bar{M} \) d'une valeur de mesure se détermine en totalisant toute une série de mesures \(M_i \) et en la divisant par le nombre \(N \) de mesure :

\[
\bar{M} = \frac{\sum M_i}{N}
\]

Si vous sélectionnez le calcul de la valeur moyenne dans le choix des fonctions, un nouveau menu de sélection avec les modes de valeur moyenne s'affiche :

- lissage de la mesure du canal sélectionné avec fenêtre de moyenne glissante, calcul de moyenne par des mesures individuelles locales ou temporelles, calcul de moyenne sur la durée, sur les cycles ou sur plusieurs points de mesure.

Sélectionner le menu de valeur moyenne par les touches: \(\mathbf{\Delta}, \mathbf{\nabla}, \) ou \(\mathbf{\text{PROG}} \)
Supprimer le calcul de valeur moyenne du canal sélectionné : \(<\text{CLR}\>\)

14.2.1 Lissage de la mesure par calcul de moyenne mobile

La première possibilité de calculer la moyenne concerne exclusivement la mesure du canal sélectionné et sert à amortir ou lisser les mesures instables, par ex. en mesure d'écoulement turbulent, par le calcul de moyenne mobile sur
Calcul de moyenne

une fenêtre temporelle. Le degré de lissage se règle entre 0 et 99 par la fonction **Lissage** sur le nombre de valeurs respectivement moyennées. La valeur lissée vaut donc également pour toutes les fonctions de valorisation suivantes et peut donc être employée en combinaison avec le calcul de moyenne sur des mesures individuelles (voir 14.2.2).

\[M = \frac{1}{N} \sum_{i=1}^{N} m_i \]

Stabilisation de la mesure par ex. sur 15 valeurs par: **Lissage**: 15
Cadence de mesure: 10 mes/s
constante de temps (s) = lissage x temps de scrutation= 3 s sur un canal

Sur la plupart des capteurs D6 ou D7, le calcul de moyenne mobile est déjà intégré dans le connecteur. Il se configue par saisie du temps de moyenne dans le menu du capteur. Le lissage n’est dans ce cas plus disponible.

Fonctionnement des menus suivants de valeur moyenne :

Lorsque vous travaillez avec les menus de valeur moyenne suivants, vous pouvez utiliser des fonctions standards comme mode de valeur moyenne, cycle de sortie, cadence de mesure, et les reprogrammer en conséquence. La sortie des données sur interface ou mémoire est possible, mais doit être configurée. Pour afficher également lors de la sortie la moyenne calculée, il faut au besoin activer le canal de fonction M(t) sur un canal supplémentaire du capteur correspondant (voir 15.9).

14.2.2 Moyenne sur mesures individuelles manuelles

Pour moyenner des mesures individuelles ponctuelles en certains lieux ou instants, sélectionner le menu **Moyenne sur mesures**. Vous pourrez y effectuer des scrutations manuelles individuelles Eᵢ de points de mesure.

1. Sélectionner la moyenne (voir 9.4) et la supprimer avec : **PROG**, **<CLR>**.
La fonction **Moyenne** indique :
La fonction **Nombre** sur les mesures indique :
2. Lire les mesures individuelles Ex.x manuellement : **<MANU>**
14. Menus de fonction

La fonction **Moyenne** indique :

Moyenne : 12.34 m³

La fonction **Nombre** indique :

Nombre : 00001

3 Pour chaque point de mesure répéter l'étape 2.

Pour les sondes de débit, appeler le menu volume avec : <VOL ➤> voir 14.2.6

14.2.3 Calcul de valeur moyenne sur le temps

Pour déterminer les moyennes sur une certaine durée, il y a 2 possibilités : utiliser les touches de Start à Stop ou saisir un temps moyen que vous démarrez manuellement, mais qui s'arrête automatiquement. Lors du démarrage et de l'arrêt, une scrutation de point de mesure est effectuée dans tous les cas, de sorte que les valeurs de début et de fin, avec la valeur moyenne, peuvent être mémorisées avec l'heure.

Effacer moyenne et durée de mesure automatiquement au départ (voir 16.9) ou après sélection de la moyenne avec : <CLR>

Lecture temps de mesure en fonction :

Temps de mesure : 00:01:30.56 U

Départ du calcul de moyenne par la touche :

<START> contrôle : \(\bar{M} \)

Arrêt du calcul de moyenne par la touche :

<STOP>

Alternativement :

Pour saisir un **temps moyen** en s, sélectionner et programmer la fonction la fonction bascule alors à :

Temps de mesure, Temps moyen : 020 U

Départ du calcul de moyenne par la touche :

<START> contrôle : \(\bar{M} \)

Arrêt du calcul de moyenne après le temps moyen

Lecture de la moyenne en fonction :

Sur les sondes d'écoulement, calcul du volume par :

<VOL ➤> voir 14.2.6

14.2.4 Calcul de la moyenne sur le cycle

Pour déterminer les valeurs moyennes horaires ou journalières, vous devez acquérir les moyennes à intervalle cyclique. On programme pour cela un cycle de sortie assurant que la moyenne ainsi que les valeurs min. et max. soient supprimées après chaque cycle, mais apparaissent à l'affichage lors du cycle suivant.

0.0 : 25.45 °C

CTN Température

Moïenne : 24.57 °C

Temporisation cyc. : 00:02:30 U

START M ➪ M VOL FCT
14.2.5 Calcul de moyenne sur points de mesure

Vous pouvez également déterminer la moyenne sur deux points de mesure. Dans le menu
Moyenne sur points de mesure vous pouvez régler le canal de départ (Bk2) avec le point de mesure de la 1ère ligne et après sélection de la fonction **jusqu’au canal :** régler aussi le canal de fin (Bk1). La valeur moyenne M(n) doit par ex. être programmée sur le canal de fonction M1.3 (voir 15.9). La scrutation des points de mesure s'effectue en continu.

Valeur moyenne M(n) de M0.0 (Bk2) à M1.0 (Bk1) :

14.2.6 Mesure de débit volumique

Pour déterminer le débit volumique DV dans les gaines d'écoulement, il faut multiplier la vitesse d'écoulement \(\bar{V} \) moyenne par la section de la gaine SG :

\[
DV = \bar{V} \cdot SG \cdot 0.36
\]

\(DV = m^3/h, \bar{V} = m/s, SG = cm^2 \)

Pour l'acquisition de la vitesse moyenne d'écoulement \(\bar{V} \) les possibilités sont les suivantes :
1. **Calcul de moyenne sur mesures individuelles** (voir 14.2.2)
2. **Calcul de moyenne sur le temps** (voir 14.2.3)

Pour les mesures de débit d'air approximatives sur grilles d'aération, on applique l'anémomètre d'un côté, démarre le calcul de moyenne, balaye toute la section de manière uniforme et arrête le calcul de la moyenne lorsqu'on atteint l'autre extrémité.

Si la valeur moyenne est en unité m/s, vous pouvez, pour déterminer le débit volumique depuis le menu de valeur moyenne, appeler le menu de débit volumique à l'aide de la touche \(<VOL-> \).

Ici, les fonctions suivantes sont disponibles

\[
M = M1.3 = \left(\sum_{i=Bk2}^{n=Bk1} M_i \right) / N
\]
pour le calcul de section :

Type de gaine: rectangle avec « Largeur » et « Profondeur »,

Type de gaine: Tube rond $k = 1.00$

Tube rond avec « Diamètre » ou

Tube rond avec « Diamètre » ou

Tube avec section : Diamètre : 00175 mm

« facteur de correction » k compris.

Affichage du débit volumique en m3/h : **Débit volumique** 1934. m3/h

14.3 Compensation deux points avec saisie de consigne

Pour la correction universelle des erreurs en 2 points quelconques, choisir le menu de fonction **COMPENSATION A DEUX POINTS**. Si les valeurs réelles sont connues sur 2 points, vous pouvez les saisir avec les consignes correspondantes. Sinon, il faut établir 2 états de consigne et les compenser en ligne. Comme 1er point, on effectue généralement une compensation du zéro, mais toute autre consigne est également possible. Sur le 2ème point de mesure, on effectue une compensation de pente et toutes les valeurs de correction sont recalculées (voir 15.6).

Compensation à deux points : (les valeurs réelles sont effacées)

1er point de mesure

Mettre le capteur dans le 1. état

0.0 : 0.4 °C

(par ex. eau glacée, sans pression etc.),

Sélectionner la consigne1 et la saisir :

Consigne1 :

0.0

Compenser la mesure sur consigne1 avec la touche :

La valeur mesurée doit afficher la consigne1 :

0.0 : 0.0 °C

2ème point de mesure

Mettre le capteur dans le 2. état

0.0 : 99.45 °C

(eau bouillante, poids connu etc.)

saisir consigne2 pour le 2ème point de mesure en :

2 : 100.0

Compenser la pente en fonction consigne2 par :

La valeur mesurée doit afficher la consigne2 :

0.0 : 100.0 °C
Compensation deux points avec saisie de consigne

Calcul de valeur de correction :
Saisir en plus la mesure connue en fonction : mesure1 : 0.4 2 : 100.0
et en fonction consigne2 calculer la correction par :
Si le capteur est verrouillé, il apparaît au préalable une demande de contrôle pour déterminer si la compensation doit tout de même être effectuée.

14.4 Échelle
Les capteurs ou transmetteurs avec sortie de signal normalisée doivent souvent être mis à l'échelle pour afficher la grandeur physique. Le menu ÉCHELLE effectue, comme dans le chapitre précédent (voir 14.3), le calcul des valeurs de mise à l'échelle base et facteur (voir 15.7) si vous saisissez 2 mesures et 2 consignes. Vous ne devez y rajouter que l'unité désirée et le nombre de décimales.

Calculer les valeurs d'échelle :
Après avoir saisi tous les paramètres, on effectue le calcul des valeurs d'échelle en fonction consigne2 avec :

Échelle par compensation à deux points :
Les capteurs ajustés à l'aide du facteur, tels que capteurs de force et de déplacement, peuvent être compensés en ligne ici, comme selon 14.3.

1. Simuler consigne1, sélectionner et saisir :
 Consigne1 : -100.0
 Dans Consigne1 compenser avec touche :
2. Simuler consigne2,
 Sélectionner la consigne2 et la saisir :
 2 : 400.0
 Compensation à deux points en consigne2 avec la touche :
 Possibilité de ne compenser que la pleine échelle, sans modifier le zéro.

14.5 Fonctions de centrale d’acquisition
Pour activer les Fonctions de centrale d’acquisition, il faut enficher sur la prise A2 un connecteur mémoire ZA 1904-SD, disponible dans les accessoires, avec une disponible dans les accessoires, avec une carte mémoire conventionnelle micro SD comme mémoire externe. Si vous n'avez aucun support de mémorisation, les menus ne sont pas disponibles.

Les 3 menus de fonctions servent à déterminer les valeurs de mesure de tous les points de mesure à certains moments, manuellement ou par cycle sur une
14. Menus de fonction
certaine période, et de les enregistrer (voir manuel 6.5).

14.5.1 Connecteur mémoire externe avec carte mémoire
La carte mémoire enregistre via le connecteur mémoire les données de mesure en mode tableur, au format standard FAT 16. La carte SD peut être formatée, lue et effacée sur tout PC avec tout lecteur de carte à l'aide de l'adaptateur SD-Card. Vous pouvez importer les données sous Excel ou dans le logiciel de mesure Win-Control. Il ne faut pas retirer le connecteur mémoire ou la carte mémoire une fois la mesure lancée car sinon, les mesures temporairement mémorisées seront perdues.

Espace mémoire libre :
Nom du fichier (sur 8 caractères max. plus index) :

Avant de commencer toute mesure, vous pouvez saisir en fonction Nom du fichier : un nom de fichier sur 8 caractères. Si vous ne le faites pas, le nom utilisé est le nom par défaut « ALMEMO.001 » ou bien le dernier nom utilisé. Tant que la configuration des connecteurs ne change pas, vous pouvez mémoriser plusieurs mesures en manuel ou cyclique, même avec des numéro (voir 14.5.2) dans le même fichier.

Si la configuration du connecteur a été modifiée depuis la dernière mesure et si aucun nouveau nom de fichier n'a été programmé, un nouveau fichier sera toujours créé avec un index incrémenté de 1 en extension, par ex. « ALMEMO.002 ». Si le nom de fichier saisi existe déjà, un nouveau fichier du même nom sera également créé mais avec un nouvel index.

Pour le contrôle de fonctionnement du connecteur-mémoire, la poignée comporte au bout une LED indiquant les états suivants :

● Aucune carte mémoire détectée : LED clignote une fois long, trois fois bref
● Les données sont enregistrées : la LED clignote au rythme du cycle
● Les données sont lues : pendant la sortie, la LED est allumée

Lors de l'insertion du connecteur, veiller à ce que la carte reste enclenchée !
Sur les cartes mémoire, la fonction mémoire circulaire n'est pas gérée !

14.5.2 Numérotation des mesures
Pour identifier les mesures ou les séries de mesures, saisir un numéro individuel avant le démarrage. Il est sorti ou mémorisé lors de la scrutation suivante des points de mesure. Ceci permet d'affecter également des mesures individuelles lors de la lecture de certains lieux ou points de mesure (voir manuel 6.7).

Après sélection de la fonction Numéro, on saisit normalement le numéro à 6 chiffres (voir 9.5). En dehors des chiffres 0 à 9, les caractères A,F,N,P,- ou _ (espace) sont également autorisés. Après la saisie, le numéro est activé et sui-
vi d'un "A" jusqu'à la mémorisation de la prochaine mesure.

Fonction Numéro : (par ex. local 12, point de mesure 1) **Numéro :** 12-001 A

Mise à zéro et désactivation du numéro par la touche : <CLR>

Activer et désactiver le numéro avec : <ON>, <OFF>

Incrémenter et activer le numéro avec : <+1>

14.5.3 Mémorisation unique de tous les points de mesure

Les scrutations uniques de points de mesure pour mémoriser les mesures instantanées de tous les points (voir manuel 6.5.1.1) se déclenchent avec la touche <MANU>.

Unitec scurutation manuelle des points de mesure avec : <MANU>

La **barre d'état** affiche brièvement pour contrôle les symboles suivants (voir 9.2) :

- La flèche de démarrage s'allume brièvement, puis s'éteint « ▶ »
- Lors de la sortie des données sur l'interface « COM » s'allume brièvement.
- Si des mesures sont enregistrées, « REC » apparaît brièvement :

A tout nouvel appui sur la touche, les mesures sont traitées de la même manière avec l'heure de mesure correspondante.

14.5.4 Mémorisation cyclique de tous les points de mesure

Pour les enregistrements cycliques des valeurs de mesure (voir manuel 6.5.1.2), il faut programmer dans le menu suivant soit le cycle de sortie, soit le cycle de scrutation puis activer la mémorisation en conséquence. La fonction **cycle mémoire** affiche alors le cycle utilisé pour enregistrer des données (voir également 11.5).

Après avoir sélectionné la fonction, vous pouvez directement saisir le cycle (voir 9.5).

Fonction **cycle mémoire** :

Cycle mémoire : 00:02:00 s

Le réglage de la date et de l'heure est décrit au 16.1.

La mesure se **lance** par la touche <START> et s'**arrête** par la touche <STOP>. A chaque démarrage d'une mesure, les valeurs max., min. et moyennes de tous les points de mesure sont supprimées si l'appareil est configuré en conséquence (standard, voir 16.9)

Lancer la scrutation cyclique des points de mesure : <START>

En contrôle apparaissent maintenant dans la **barre d'état** les symboles suivants (voir 9.2) en permanence, c.-à-d. tant que la mesure est active :

- La flèche de départ s'allume « ▶ »

Lors de la sortie des données sur l'interface, « COM » s'allume.

Si les mesures sont enregistrées, « REC » apparaît

Arrêter la scrutation cyclique des points de mesure : <STOP>
14.5.5 Espace mémoire, Éditer la mémoire et l'effacer
La fonction **Mémoire libre** affiche en permanence la mémoire encore disponible pour enregistrer les mesures. En choisissant cette fonction, vous accédez à deux touches programmables pour éditer et supprimer la mémoire directement.

Fonction **Mémoire libre** par ex. : **MémoireLibre** : 238.4 kB
 Sortie de mémoire au format tableur ; <PMEM>
 Effacer la carte mémoire complètement : <CMEM>

Sur les **cartes mémoire SD** (voir 14.5.1), seules les données de mesure du dernier fichier peuvent généralement être éditées par l'appareil en mode tableau. Pendant la sortie de la mémoire, la LED sur la poignée est allumée en permanence.

On peut de manière judicieuse retirer la carte mémoire et copier directement les fichiers dans le PC via l'adaptateur SD-Card et le lecteur de carte USB. Vous pourrez les importer aussi bien sous Excel que sous Win-Control (V.4.8.1 et supérieures).

14.5.6 Configuration de scrutation
Dans le menu suivant, accessible par la touche <F>, vous visualisez d'abord la mémoire totale offerte par la carte SD utilisée.

Avec les fonctions suivantes « **Cycle de sortie** » (16.7.3), « **Cycle de scrutation** » (16.7.2) et « **Cadence de mesure** » (16.7.1) vous pouvez déterminer exactement la scrutation et l'enregistrement des capteurs standards et D7. Ils sont affichés ici avec tous les réglages. L'activation mémoire s'occupe du « cycle mémoire » qui en résulte (voir 14.5.4).

Cycle de sortie avec activation mémoire
Pour une mémorisation cyclique relativement lente des valeurs de mesure, à partir de 1 seconde pour tous les capteurs, utiliser le **Cycle de sortie** avec l'activation mémoire correspondante. Si durant ce temps, tous les canaux n'apparaissent pas à chaque fois, il est alors possible d'autoriser ou d'activer le surcadençage. Après le démarrage, la temporisation de cycle décrémente jusqu'au cycle suivant.

Saisir le **cycle** au format « hh:mm:ss » voir 16.7.3 : Cycle de sortie : 00:01:00 s U

Supprimer cycle, terminer scrutation en cours : <CLR> 00:00:00 s U

Fonction **Activation mémoire** en cycle de sortie :
 Méémoriser : <ON>
 Désactiver enregistrement (réglage de base) :
 Activer enregistrement (réglage de base) :
 Surcadençage :
 Autoriser enregistrement :

Mémoire ext. : 514.41 MB
Cycle de sortie : 00:01:00 s U
Mémoriser : <ON>
Cycle de scrutation : 00 002 s
Mémoriser : <ON>
Cadence de mes. : 10 mes/s
Mode scrutation: Normal
Mode scrutation: Normal

Mémoire Libre : 238.4 kB

Sortie de mémoire au format tableur ; <PMEM>

Effacer la carte mémoire complètement : <CMEM>

Cycle de sortie : 00:01:00 s U

Mémoriser : <ON>

Activer enregistrement (réglage de base) :

Désactiver enregistrement :

Surcadençage :

Autoriser le surcadençage :

Mode scrutation : Normal

Cycle de scrutation :

Cycle de sortie :

Mémoire ext. :

Sortie :

Cadence de mes. :

Mode scrutation :

FCT
Pour les processus assez rapides, en particulier avec capteurs D7, il faut activer la mémorisation du cycle de scrutation. Pour les capteurs standards, la vitesse est donnée par la cadence de mesure. Pour les capteurs D7 par le temps de mesure minimum.

Choix du cycle de scrutation voir 16.7.2 : Cycle de scrutation : 00 005 s
- Mémorisation arrêt :
- Activer mémorisation : ☑
- Désactiver sortie :
- Activer sortie :
Saisie de la Cadence de mesure voir 16.7.1 : Cadence de mesure : 10 mes/s

14.5.7 Mode scrutation
Pour fonctionner en mode centrale d'acquisition autonome et/ou scruter les mesures par l'ordinateur, 4 modes de scrutation sont disponibles :

- **Normal** : cycle interne ou scrutation cyclique par l'ordinateur
- **Veille** : cycle interne seul avec coupure pour les surveillances à long terme
- **Moniteur** : cycle interne pas perturbé par les scrutations d'ordinateur
- **SécIntégr.** : scrutation cyclique par le PC, sur panne du cycle interne

Fonction mode scrutation :

- Normal : Mode scrutation : Normal
- Veille : Mode veille

Régler le mode scrutation voir 9.5 ou par la touche :

Mode veille
Pour les surveillances sur le long terme avec de grands cycles, il est possible d'exploiter l'appareil de mesure en mode veille. Dans ce mode d'économie d'énergie, l'appareil est complètement mis hors tension après chaque scrutation de points (y veiller pour le cas des capteurs avec alimentation, régler le cas échéant le retard de veille) et seulement après écoulement du temps de cycle, remis sous tension automatiquement pour la séquence de scrutation suivante. De cette manière, une charge de pile/accumulateur permet de procéder à plus de 15000 scrutations de points, ce qui donne pour un cycle de 10 minutes une durée de mesure de plus de 100 jours.

A la sélection du mode veille, tous les paramètres nécessaires sont configurés, le cas échéant après confirmation par une fenêtre de contrôle.

Pour un enregistrement des données en mode veille veuillez procéder aux étapes suivantes :

1. Saisir un cycle d'au moins 2 minutes :
 - Cycle : 00:05:00
2. Activer la mémoire dans le cycle :
 - Mémoriser : ☑ Mode : Normal
3. Sélection mode scrutation :
 - Mémoriser : ☑ Mode : Normal
4. Programmer le mode veille : voir 9.5
5. Dans le menu **Centrale d'acquisition** lancer la mesure par :

ALMEMO® 202 45
14. Menus de fonction

A l'afficheur, l'appareil affiche encore Sleep On puis se déconnecte et pour le contrôle seul le voyant rouge « SLEEP » clignote en haut dans la fenêtre, en rythme.

6 Dans le cycle de mesure réglé, l'appareil se met automatiquement sous tension, effectue une scrutation des points de mesure, puis se met à nouveau hors tension.

7 Arrêter le mode Veille par la touche : <ON>

8 Arrêter la mesure par la touche : <STOP>

Pour lancer une mesure en mode veille, on peut également se servir de l'heure de début (voir 14.5.8), cependant il n'est pas possible de l'arrêter par l'heure de fin et la durée de mesure !

Mode Moniteur :
Si vous voulez surveiller par un ordinateur une centrale d'acquisition exploitée de manière cyclique, utilisez le nouveau 'Mode moniteur'. La scrutation effectuée par le logiciel n'affecte aucunement la scrutation cyclique interne (sous Win-Control, désactivez 'initialisation protégée')

Le cycle interne démarre lors du lancement du logiciel, mais vous pouvez aussi le démarrer plus tôt. Lors de la scrutation par le cycle interne, les données ne sont pas éditées sur l'interface. Pour enregistrer des données, la mémoire doit être active.

Dans la fonction Mode programmer la variante Moniteur : Mode : moniteur

Mode SécIntégr. :
Si lors d'une simple scrutation par le logiciel, vous voulez uniquement assurer qu'en cas de panne de l'ordinateur la scrutation interne cyclique continue, choisir le mode sécurité intégrée. Dans ce mode, vous devez programmer un cycle plus important dans l'appareil que pour la scrutation par logiciel (par ex. cycle appareil 20s, cycle logiciel 10s). La scrutation par le logiciel remet systématiquement le cycle interne à zéro. Il n'est donc utilisé que lorsque la scrutation par le logiciel tombe en panne (sous Win-Control, désactivez 'initialisation protégée').

Le cycle interne est lancé au démarrage par le logiciel Win-Control, mais vous pouvez également le démarrer plus tôt. Lors de la scrutation par le cycle interne, les données ne sont pas éditées sur l'interface. Pour enregistrer des données, la mémoire doit être active.

Dans la fonction Mode, programmer la variante Séc. intégrée : Mode : séc. intégrée

Temps de mémoire
Dans le 3ème menu de centrale d'acquisition, un paramètre important pour
l'enregistrement des données est le **temps de mémoire** disponible. Il dépend de l'espace mémoire, du nombre de canaux de mesure actifs et de la cadence de mesure ou du temps de mesure individuel des capteurs D7.

Temps mémoire disponible :

14.5.8 Démarrage et arrêt des mesures

Outre le démarrage et l'arrêt de la mesure par les touches, il existe bien d'autres possibilités. Vous les trouverez au chapitre 6.6 du manuel. Vous trouverez l'Heure de début et de fin ainsi que la Durée de mesure et les actions aux limites au chap. 15.12.2, et les variantes de relais et de déclenchement au chap. 17.2.

Date et heure de début, date et heure de fin

Une série de mesure peut être démarrée et arrêtée automatiquement à des heures précises. Pour ceci, vous pouvez programmer une **heure** et une **date de début** ainsi qu'une **heure** et une **date de fin**. Si aucune date n'est fixée, la mesure est effectuée chaque jour sur la période de temps réglée. Alternativement à l'heure de fin, on peut également programmer la **durée de mesure**. La durée totale de la mesure depuis le départ peut s'afficher dans la fonction **Temps de mesure**.

Il est évident que l'heure actuelle doit être programmée préalablement.

En **mode veille**, il n'est pas tenu compte de l'heure de fin et la durée de mesure !

** Sélection du menu par la touche :**

- **< ▶ F >**
 - **Fonction Durée de mesure (format hh:mm:ss) :** Durée de mesure : 00:10:00
 - **Fonction Heure de début (format hh:mm:ss) :** Heure de début : 07:00:00
 - **Fonction Heure de fin (format hh:mm:ss) :** Heure de fin : -------
 - **Fonction Date de début (format jj:mm:aa) :** Date de début : 01.05.2007
 - **Fonction Date de fin (format jj:mm:aa) :** Date de fin : -------

Temps de mesure depuis le début (format hh:mm:ss.cc) :

```
Temps de mesure : 00:01:23.45
```

Suppression des valeurs après sélection de la fonction avec : **<OFF>**

Lorsque l'heure de début d'une mesure est programmée, la barre d'état affiche le symbole :

```
   « ▶ »
```

Lorsque l'heure de fin ou la durée d'une mesure est programmée, la barre d'état affiche le symbole :

```
   « ▶ »
```
15. Programmation des capteurs

15. PROGRAMMATION DES CAPTEURS

Sur les appareils ALMEMO®, toute la programmation des capteurs est mémorisée dans le connecteur ALMEMO® et l'utilisateur ne doit donc normalement effectuer aucune programmation. Seulement si vous corrigez des erreurs de capteurs, si vous les mettez à l'échelle vos propres capteurs ou si vous désirez fixer des limites etc., de multiples possibilités de programmation sont disponibles.

Dans les menus FONCTIONS CANAL, vous pouvez contrôler tous les paramètres d'un canal et les saisir ou modifier à l'aide des touches, à condition que le connecteur correspondant soit branché. Veiller alors à ce que le capteur de série soit protégé par le mode de verrouillage contre toute modification involontaire et si vous désirez apporter une modification, penser à baisser le niveau de verrouillage (voir 15.4). Les fonctions ne peuvent être sélectionnées que si le mode verrouillage le permet.

 Sélection des 4 menus pour programmer les capteurs : <P> ... et <P>C>

15.1 Sélection du canal d'entrée

Pour lire ou programmer les paramètres d'un capteur, sélectionner d'abord le menu FONCTIONS CANAL, puis régler le canal d'entrée désiré avec les touches ou (nouvelle numérotation de canal V7 !). Seuls les capteurs branchés et les canaux actifs sont alors pris en compte. Pour pouvoir activer de nouveaux canaux, vous pouvez à l'aide de la touche <MALL> valider la sélection de tous les canaux. Avec la touche <MACT>, vous réduisez à nouveau la sélection aux canaux actifs. Chaque canal d'entrée est affiché avec le numéro du connecteur correspondant.

Menu FONCTIONS CANAL :
Affichage du numéro de connecteur et du canal : Connecteur :0 Canal :0.0
Sélectionner le prochain canal d'entrée avec la touche :
Sélectionner canal d'entrée précédent par la touche :
Permettre la sélection de tous les canaux possibles :
Réduire la sélection à tous les canaux actifs :

15.2 Libellé canal

Chaque canal de mesure peut être pourvu d'un libellé alphanumérique de 10 caractères, et même de 20 caractères sue les capteurs D7, pour repérer de manière optimale le type de capteur, le lieu de mesure et l'objectif de l'utilisation. Ce commentaire s'affiche pour tous les affichages de mesure standards. Lors des sorties de mesure par l'interface, le libellé du canal apparaît en ligne au départ ou en cas de sortie mémoire, en tête de tableau comme « Comment-
Libellé canal

Saisie en fonction Lib, voir 9.5
Lib: Température de rosée
Un « ! » à la fin indique un étalonnage multipoint (voir 15.11).

15.3 Mode moyenne

Les types de calcul de moyenne déterminés par la fonction sont décrits au chapitre 14.2 et dans le manuel au chap. 6.7.4.

Fonction Aucun calcul de moyenne: Mode moyenne: ------
Calcul de la moyenne Start à Stop ou à partir de mesures individuelles: CONT
Calcul de moyenne de toutes les lectures du cycle de sortie: CYCL
Réglage du mode moyenne voir 9.5: Mode moyenne: CONT

15.4 Verrouillage de la programmation des capteurs

Les paramètres de fonction de chaque point de mesure sont protégés par le mode de verrouillage à un niveau réglable (voir manuel 06/03/2012). Avant toute programmation, le mode de verrouillage doit être baissé en conséquence. Si l'afficheur affiche un point derrière le mode verrouillage, aucune modification n'est possible.

Niveau de verrouillage Fonctions verrouillées
0 aucun
1 Plage de mesure + drapeaux d'éléments + mode sortie
3 + unité
4 + correction de zéro et pente
5 + valeur de base, facteur, exposant
6 + sortie analogique début et fin
7 + compensation temporaire du zéro
8 + limites max. et min.

Fonction Mode verrouillage: Verrouillage: 5

Dans le menu FONCTIONS CANAL les fonctions sont disposées de haut en bas de sorte que les fonctions verrouillées ne puissent pas être sélectionnées.
15. Programmation des capteurs

15.5 Limites
Pour chaque canal de mesure, deux limites (MAX et MIN) sont programmables. Le dépassement des limites ainsi que le dépassement des limites de la plage de mesure et la rupture de ligne sont considérés comme défauts. Devant la valeur mesurée, la flèche ▲ ou ▼ apparait à l'afficheur et les relais d'alarme d'un câble de relais raccordé sont excités (voir 17.2). Il est également possible d'affecter des relais aux limites (voir 15.12.2). L'état d'alarme est maintenu jusqu'à ce que la mesure soupasse à nouveau la limite, de la valeur de l'hystérésis. L'hystérésis est normalement de 10 digits, mais peut être ajusté dans la plage de 0 à 99 digits (voir 16.8). Le dépassement de limite peut également servir pour démarrer ou arrêter une mesure (voir 15.12.2).

Fonction :
- Saisir limite max (voir 9.5) :
 - Limite max : 123.4 °C
- Limite min :
 - Limite min : ----- °C
- Désactiver limite :
 - <OFF>
- Activer limite :
 - <ON>

15.6 Valeurs de correction
Les valeurs de correction ZERO et PENTE permettent de corriger le zéro et la pente des capteurs (voir manuel 06/03/2010). Les valeurs corrigées peuvent ensuite être encore mise à l'échelle par la BASE et le FACTEUR (voir 15.7). Ces fonctions s'obtiennent avec la touche <P> dans le menu **FONCTIONS DE CANAL 2**.

Mesure corrigée = (Mesure - ZERO) x PENTE.

Fonctions :
- Correction du zéro :
 - Zéro : ----- °C
- Correction de pente :
 - Pente : ----- °C
- Touches de démarrage et d'arrêt :
 - <OFF> ou <ON>

Lorsque les valeurs d'échelle ont été programmées et que la mesure effective a été modifiée, l'état de la mesure (voir 9.2) est indiqué par la flèche de correction ▼.

Pour atteindre la précision maximum, l'option KL permet un étalonnage des capteurs sur plusieurs points (voir 15.11).

15.7 Mise à l'échelle, réglage du point décimal
Pour pouvoir afficher le signal électrique d'un capteur en tant que mesure de la grandeur physique, un décalage du zéro et une multiplication par un facteur sont quasiment toujours nécessaires. Il existe pour cela les fonctions BASE et FACTEUR. Vous trouverez une description exhaustive de la mise à l'échelle avec des exemples au chapitre 6.3.11 du manuel.
Valeur affichée = (mesure corrigée - BASE) x FACTEUR.

Le FACTEUR est programmable dans la plage -2.0000 à +2.0000. Pour les facteurs au-dessus de 2.0 ou en-dessous de 0.2, il faut prévoir un réglage du point décimal en saisissant l'EXPOSANT. A l'aide de l'EXPOSANT, la virgule peut être décalée autant à gauche (-) ou à droite (+) que l'affichage sur l'afficheur et l'interface le permet. Une représentation des mesures avec exposant est impossible.

Fonctions :
Base: -------
Facteur, Exp: ------- E0

Pour le calcul automatique des valeurs de mise à l'échelle à partir des valeurs réelles et des consignes, il existe dans les menus de fonctions un menu spécifique ECHELLE (voir 14.4).

Si des valeurs d'échelle ont été programmées et que la mesure effective a donc été modifiée, l'état de la mesure (voir 9.2) est indiqué par la flèche de correction.

15.8 Changement d'unité

Pour chaque voie de mesure il est possible de remplacer l’unité par défaut de la plage de mesure par une unité au choix sur 2 caractères, jusqu'à 6 pour les capteurs D7 (voir aussi le manuel 6.3.5). En plus des majuscules et des minuscules, les caractères °, Ω, %, !, [,], *, -, =, ~ et l'espace (_) sont autorisés. L'unité s'affiche respectivement après les valeurs de mesure et les valeurs de programmation.

Pour modifier l'unité se servir de la fonction : 1 Plage, unité : DIGI °C

En entrant l'unité °F la valeur de la température est convertie de degrés Celsius en degrés Fahrenheit. Les unités suivantes sont générées automatiquement en saisissant les 2 caractères correspondants : ms pour ms, m²h pour mh, Wm² pour Wm, gk pour gk.

15.9 Choix de plage de mesure

Les plages de mesure individuelles des capteurs D6 et D7 se modifient sur cet appareil uniquement par le menu de configuration de capteur (voir 15.10). Ce chapitre décrit les canaux de fonction que vous pouvez en plus utiliser. Dans tous les cas, veiller à effacer le verrouillage des connecteurs, c.-à-d. à le mettre à 0 (voir 15.4). Pour activer un nouveau canal de mesure, il faut activer tous les canaux par le touche <MALL>, sélectionner le canal d'entrée correspondant (voir 15.1) puis saisir la plage de mesure. Lors de la confirmation de saisie de la nouvelle plage de mesure, toutes les valeurs de programmation du canal d'entrée sont annulées.

Fonction sélection de la plage de mesure :

PLAGE, unité : DIGI °C
15. Programmation des capteurs

Éventuellement permettre la sélection de tous les canaux de mesure possibles :

Désactivation d'un canal :

Activation d'un canal :

Programmation d'une plage comme pour la saisie de données 9.5

Dans la fenêtre de saisie apparaissent successivement tous les mnémoniques du tableau suivant :

et une fenêtre d'aide apparaît permettant l'identification des capteurs :

<table>
<thead>
<tr>
<th>Capteur de mesure</th>
<th>Connecteur/câble/capteur</th>
<th>Étendue de mesure</th>
<th>Unité</th>
<th>Affichage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension capteur</td>
<td>au choix</td>
<td>0.00 à 20.00</td>
<td>V</td>
<td>Batt</td>
</tr>
<tr>
<td>Fréquence</td>
<td>ZA 9909-AK</td>
<td>0 à 25000</td>
<td>Hz</td>
<td>Freq</td>
</tr>
<tr>
<td>Impulsions</td>
<td>ZA 9909-AK</td>
<td>0 à 65000</td>
<td>Puls</td>
<td></td>
</tr>
<tr>
<td>Entrée ToR</td>
<td>ZA 9000-EK2</td>
<td>0.0 à 100.0</td>
<td>%</td>
<td>Inp</td>
</tr>
<tr>
<td>Interface numérique</td>
<td>ZA 9919-AKxx</td>
<td>-65000 à +65000</td>
<td>DIGI</td>
<td></td>
</tr>
<tr>
<td>Mesure (Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Différence (Mb1-Mb2)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur maximale (Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valeur minimale (Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne temporelle (Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre de valeurs moyennées (Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne sur points de mes. (Mb2..Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somme sur points de mes. (Mb2..Mb1)</td>
<td>au choix</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre total d'impulsions (Mb1)</td>
<td>ZA 9909-AK</td>
<td>voir manuel 6.7.1</td>
<td></td>
<td>S(t)</td>
</tr>
<tr>
<td>Nb impulsions/cycle impr. (Mb1)</td>
<td>ZA 9909-AK</td>
<td>voir manuel 6.7.1</td>
<td></td>
<td>S(P)</td>
</tr>
<tr>
<td>Valeur d'alarme (Mb1)</td>
<td>au choix</td>
<td>voir 15.12.5</td>
<td>%</td>
<td>Alrm</td>
</tr>
<tr>
<td>Débit volumique m³/h Mb1 · Q</td>
<td>au choix</td>
<td>voir 14.2.6</td>
<td>m³/h</td>
<td>Flow</td>
</tr>
<tr>
<td>Tempo 1</td>
<td>au choix</td>
<td>0 à 65000</td>
<td>s</td>
<td>Time</td>
</tr>
<tr>
<td>Tempo 2 (Exposant -1)</td>
<td>au choix</td>
<td>0.0 à 6500.0</td>
<td>s</td>
<td>Time</td>
</tr>
</tbody>
</table>

Les canaux de fonction permettent de représenter des paramètres de fonction du traitement de la valeur de mesure ou des résultats de calcul issus de l'association de certaines valeurs de mesure avec les canaux de mesure (voir manuel 6.3.4). La référence aux canaux de mesure effectifs est établie par un ou deux canaux de référence. Sur tous les canaux de fonction existent des ca-
Choix de plage de mesure

naux de référence standards Mb1 et Mb2 dans le connecteur correspondant, pour lesquels aucune programmation n'est nécessaire :

<table>
<thead>
<tr>
<th>Fonction</th>
<th>Canal de fonction</th>
<th>Canal réf. 1</th>
<th>Canal réf. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paramètres de fonction (Mb1)</td>
<td>sur canal 2, 3 ou 4</td>
<td>Mb1= canal 1</td>
<td></td>
</tr>
<tr>
<td>Différence (Mb1-Mb2)</td>
<td>sur canal 2, 3, 4 (Mb1)</td>
<td>Mb1= canal 1</td>
<td>Mb2=M0.0</td>
</tr>
<tr>
<td>Moyenne sur Mb2..Mb1</td>
<td>sur canal 2, 3, 4 (Mb1)</td>
<td>Mb1= canal 1</td>
<td>Mb2=M0.0</td>
</tr>
<tr>
<td>Somme de Mb2..Mb1</td>
<td>sur canal 2, 3, 4 (Mb1)</td>
<td>Mb1= canal 1</td>
<td>Mb2=M0.0</td>
</tr>
</tbody>
</table>

Ordre des canaux dans les connecteurs :
Après la programmation de la plage, les canaux de référence par défaut sont mis en œuvre (voir ci-dessus). Le réglage de chacun des canaux de référence est décrit au 15.12.6.

15.10 Configuration capteur

capteurs V5/D6 capteurs D7

Les capteurs D6 et D7 peuvent présenter de toutes nouvelles plages de mesure et des paramètres spécifiques, qui sont totalement inconnus de l'appareil de mesure. C'est pourquoi ces capteurs spéciaux offrent chacun leur propre menu de capteur, à l'aide duquel il est possible de procéder à la configuration du capteur avec tous ses réglages spéciaux (tels que plages de mesure, compensations, cadence de mesure, lissage etc.). Le menu « configuration capteur » s'obtient dans la « liste de capteur » (voir chap. 10) après sélection du capteur par la touche <CONF>. Les paramètres réglables sont décrits dans les notices « Capteurs numériques ALMEMO D6 » et « Capteurs numériques ALMEMO D7 ».

15.11 Étalonnage multipoint
Tous les capteurs ALMEMO® purement numériques (capteurs DIGI, D6 et D7) peuvent être corrigés dans leur courbe caractéristique à l'aide d'un étalonnage multipoint, par le logiciel ALMEMO®-Control. Les capteurs DIGI autorisent une caractéristique possédant jusqu'à 36 valeurs pivot, sur les capteurs D6 et D7, chacun des 4 canaux primaires peut être corrigé (sur D6 au total 36, sur D7 même à chaque fois 36 valeurs pivot). A cette occasion, seuls les écarts sont
ajoutés interpolés en linéaire aux caractéristiques d'origine et ainsi, la précision est accrue de manière décisive. Cette correction s'effectue dans le cadre d'un étalonnage d'usine ou DAkkS (raccordé Cofrac) ou même avec l'ALMEMO® 202, s'il est équipé de l'option KL. L'étalonnage multipoint d'un canal s'affiche par un « ! » à la fin du libellé de canal.

15.12 Fonctions spéciales

Sur l'appareil de mesure 202, tous les paramètres de capteur sont accessibles dans les 2 menus **FONCTIONS SPECIALES**. Bien que rarement utilisées en fonctionnement normal, elles sont très utiles pour certaines applications (voir manuel 6.10). Certaines de ces fonctions sont très complexes et nous recommandons de les utiliser uniquement si leur mode d'action a été entièrement compris.

On accède aux 2 menus de fonctions spéciales après programmation des capteurs avec la touche : ![P>](#) ou ![P>](#)

Retour au dernier menu jusqu'au choix des menus : ![P>](#) ou ![P>](#)

15.12.1 Facteur de cycle

Pour adapter l'enregistrement des données avec cycle de sortie à la vitesse de modification des différents points de mesure, il est possible d'éditer certains canaux moins souvent ou pas du tout en programmant un facteur de cycle entre 00 et 99 (voir manuel 6.10.6). Seuls les points de mesure perturbés, par ex. en cas de dépassement de limite, sont édités en standard. Par défaut, le facteur de cycle de tous les points de mesure est supprimé ou mis à 01, c.-à-d. que tous les points de mesure actifs sont édités à chaque cycle de sortie. Si l'on saisit un autre facteur, par ex. 10, le point de mesure correspondant n'est édité qu'une fois sur 10, pour 00 il n'est pas édité du tout.

Saisir le facteur de cycle (voir 9.5) en fonction : **Facteur de cycle :** ![P>](#)

Effacer facteur de cycle par la touche : ![CLR>](#)

15.12.2 Actions en dépassement de limite

Affectation des relais

Pour signaler une alarme, les deux limites de tous les points de mesure d'un appareil sont prises en compte (voir 15.5), c.-à-d. si sur un point de mesure quelconque la limite est dépassée, un relais (programmé en conséquence) se déclenche sur un câble de relais d'alarme ou sur une carte relais (voir manuel 5.2/3). Il ne retombe que lorsque toutes les mesures ont soupassé la limite de la valeur de l'hystérésis. Si aucune limite n'est fixée, la limite de la plage de mesure est équivalente à la limite. Une rupture de ligne déclenche toujours une alarme.
S'il faut détecter les défauts de manière sélective et les évaluer, il est possible dans les fonctions **Action max** et **Action min** d'affecter des relais individuels aux différentes limites. On peut également affecter plusieurs limites à un même relais. Les câbles de relais offrent à cet effet 2 relais, le nouvel adaptateur relais (ZA 8006-RTA3) jusqu'à 10 relais. Sur le module de sortie du relais, régler comme mode la variante 2 (affectation int.) (voir 17.2, manuel 6.10.9).

Activation du relais xx si dépassement limite max :
Activation relais xy si soupassement limite min :
Supprimer affectation du relais par la touche :
Programmer le module de sortie (voir 17, 17.2) :
Choisir le port du relais :

régler variante 2 (affectation int.) :

Commande d'une mesure

Vous pouvez utiliser les dépassements de limite non seulement pour signaler des alarmes, mais également pour commander une mesure (voir manuel 6.6.3). L'affectation des commandes à une limite s'effectue également par les fonctions :

Action max et **Action min**

Lancer la mesure sur limite max :
Arrêter la mesure sur limite min :
Scrutation manuelle sur limite max :
RAZ tempo2 sur limite max :
Exécuter macro 5 à 9 sur limite max :

Régler l'action par la touche :
Supprimer l'action par la touche :

15.12.3 Début analogique et fin analogique

La sortie analogique des valeurs de mesure sur les modules de sortie analogique (voir manuel 5) ou l'affichage comme graphique à barres doit dans la plupart des cas être mise à l'échelle sur une certaine plage partielle. Pour ceci, vous déterminez uniquement la valeur de début et de fin de la plage de représentation dont vous avez besoin. Cette plage est ensuite représentée en plage analogique 2 V, 10 V, 20 mA ou sur l'écran graphique à barres de 100 points.

Programmer le **début de sortie analogique** :

Programmer la fin de sortie analogique :

Ces deux paramètres Début et Fin de sortie analogique sont mémorisés dans l'EEPROM du capteur et sont donc programmables individuellement pour chaque canal, c.-à-d. que lors de la commutation manuelle des canaux, chaque grandeur de mesure peut être mise à l'échelle individuellement.
15. Programmation des capteurs

Le drapeau de commutation de 0-20 mA à 4-20 mA se programme par les drapeaux d'éléments (voir 15.12.7, 17.3).

15.12.4 Tension minimale d'alimentation de capteur

Comme sur tous les appareils ALMEMO®, la tension d'alimentation des capteurs est également surveillée sur le 202. Elle est également affichée au menu INFO (voir 10). Il existe cependant des capteurs qui ont besoin d'une tension d'alimentation pour fonctionner correctement et qui nécessitent par ex. un adaptateur secteur. Pour éviter les erreurs de mesure, vous pouvez saisir dans la programmation des capteurs la tension capteur minimale individuelle nécessaire pour chaque capteur. Si celle-ci est soupassée, la mesure est considérée comme rupture de ligne (le témoin L clignote, voir 9.2).

Saisie tension d'alimentation minimale des capteurs: **U-capteur min: 12.0 V**
Désactiver le contrôle de tension, effacer valeur: **<CLR>**

15.12.5 Fonction de sortie

Si la valeur mesurée proprement dite du canal Mx.x n'est pas nécessaire, mais uniquement la valeur max, min, moyenne ou d'alarme, cette fonction peut être programmée comme fonction de sortie (voir manuel 6.10.4). Lors de la mémoire et de l'édition analogique ou numérique, seule la valeur de fonction correspondante est alors prise en compte. En contrôle de la fonction de sortie modifiée, le symbole ci-dessous apparaît près de la mesure (voir 9.2).

Exemples:
1. Si vous avez moyenné des mesures sur le cycle, la valeur de sortie intéressante est uniquement la moyenne et non pas la dernière valeur mesurée. Ceci permet d'économiser de l'espace mémoire lors d'un enregistrement de données.
2. La mesure analogique du capteur de condensation FH A946-1 n'a aucune importance. On fixe la limite max à env. 0.5 V, on programme la fonction de mesure Valeur d'alarme et l'on obtient plus que les valeurs 0.0% pour sec, et 100.0% en condensation.

<table>
<thead>
<tr>
<th>Fonction de sortie</th>
<th>Symbole de contrôle</th>
<th>Menu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure (Mxx)</td>
<td></td>
<td>fonction sortie : Mess</td>
</tr>
<tr>
<td>Différence (Mxx-M00)</td>
<td>D</td>
<td>fonction sortie : Diff</td>
</tr>
<tr>
<td>Valeur max (Mxx)</td>
<td>H</td>
<td>fonction sortie : Max</td>
</tr>
<tr>
<td>Valeur min (Mxx)</td>
<td>L</td>
<td>fonction sortie : Min</td>
</tr>
<tr>
<td>Valeur moyenne (Mxx)</td>
<td>M</td>
<td>fonction sortie : M(t)</td>
</tr>
<tr>
<td>Valeur d'alarme (Mxx)</td>
<td>A</td>
<td>fonction sortie : Alrm</td>
</tr>
</tbody>
</table>
15.12.6 Canaux de référence
Les fonctions de calcul des canaux de fonction se réfèrent généralement à un certain canal ou 2 canaux de mesure (voir 15.9, manuel 6.3.4). Lors de la programmation d'un canal de fonction, le système configure automatiquement comme canal de référence Mb1 le premier canal du connecteur du capteur Mxx1 correspondant. Le 2ème canal de référence Mb2 (si différence, valeur moyenne M(n) etc.) est d'abord le point de mesure M0.0. En fonction canal de référence 1 il est possible de régler également d'autres points de mesure comme canaux de référence.

Programmation du canal de référence 1 : Canal référence 1 : (1.0) 2 : --

Sur les canaux de fonction nécessitant un 2ème canal de référence (voir plus haut), il est possible d'entrée après le canal de référence 1 également le 2ème canal de référence (voir manuel 6.10.2).

Programmation du canal de référence 2 absolu : Canal réf. 1 : (1.0) 2 : (0.0)

Sur les plages de mesure nécessitant aucun canal de référence, seuls des tirets s'affichent, canaux standards entre parenthèses (voir 15.9).

15.12.7 Drapeaux d'éléments
Pour réaliser les fonctions supplémentaires spécifiques au capteur, il est possible d'activer sur chaque voie de mesure des drapeaux d'élément (voir manuel 6.10.3)

3 Pont de mesure à interrupteur de simulation de pleine échelle
4 Ne valoriser le canal de mesure que cycliquement
8 Sortie analogique 4-20 mA au lieu de 0-20 mA

Les drapeaux d'éléments 1, 2, 5, 6 de l'ALMEMO 202 n'ont aucune fonction !

Fonction Drapeaux d'éléments : Drapeaux d'éléments :

Programmer les drapeaux d'éléments avec :

Programmer les drapeaux d'éléments avec :

Drapeaux d'éléments :

87654321

Drapeaux d'éléments :

Sélectionner les drapeaux d'éléments avec :

Drapeaux d'éléments :

et

Drapeaux d'éléments :

et

Drapeaux d'éléments :

et

Drapeaux d'éléments :

et
16. CONFIGURATION DE L'APPAREIL

Au menu CONFIGURATION DE L'APPAREIL il est possible d'effectuer certains réglages fondamentaux tels que la date et l'heure, la langue et l'éclairage. Le libellé de l'appareil sert à individualiser l'appareil ou facilite l'affectation dans un réseau. En outre l'adresse de l'appareil est incontournable dans le réseau. On peut adapter la vitesse en baud aux appareils externes. Il est possible de modifier la valeur par défaut de l'hystérésis sur les relais d'alarme.

16.1 Heure et Date

Pour établir le rapport de l'enregistrement de données, il existe une horloge temps réel avec date, sauvegardée par pile tampon. A l'état éteint, il est cependant possible de changer la pile sans perdre l'heure ni la date. En sélectionnant la fonction (voir 9.4), vous pouvez programmer dans la première ligne à gauche l'heure et à droite la date au format indiqué (voir 9.5).

Fonction Heure : Format hh:mm:ss
Heure : 12:34:56

Fonction Date : Format jj.mm.aa
Dat. : 01/05/2014

16.2 Libellé appareil

Dans la fonction Libellé appareil (voir manuel 6.2.4) vous pouvez saisir un texte au choix, de 40 caractères max. (voir 9.5). Par un texte individualisé, l'appareil est bien identifiable dans l'afficheur (configuration appareil, menu Info), dans les impression ou dans un logiciel (listes d'appareils).

Fonction Libellé appareil :
Libellé appareil : Ahlborn, Chevreuse

16.3 Langue

Vous pouvez choisir la langue des libellés de fonction et des impressions entre allemand, anglais et français (autres langues sur demande). Les touches programmables sont internationales et ne changent pas.

Sélection de la langue par la touche <SET> dans la fonction : Langue: Français

16.4 Éclairage et contraste

Vous pouvez activer et désactiver l'éclairage de l'afficheur dans le menu de sélection et dans de nombreux autres menus par la touche <* ON> ou dans la configuration de l'appareil à l'aide de la fonction Éclairage (attention, ceci double la consommation électrique). Si l'éclairage est activé, mais qu'aucun adaptateur secteur n'est branché, l'éclairage s'éteint au bout d'une durée réglable, après la dernière action sur touche (pause) et se réactive en appuyant sur une touche. Avec la fonction Contraste vous pouvez régler le contraste de l'afficheur sur 10 niveaux.
Éclairage et contraste

Activer l'éclairage :
Éclairage :

Sélectionner un temps d'éclairage de 20 s à 10 min avec <SET> : Durée : 20 s

Si l'éclairage est activé,
la barre d'état affiche le symbole :

S'il s'est interrompu temporairement, allumage de :
Pause

Remise en service sans fonction par la touche :

Ajuster le contraste (5 à 100 %) avec <- > et <+ > : Contraste :

50%

16.5 Interface, adresse d'appareil et mise en réseau

Vous pouvez par l'interface série éditer des journaux de mesure cycliques ainsi que toute la programmation des capteurs et de l'appareil sur un ordinateur (voir manuel chap. 6). Pour le raccordement aux différentes interfaces, divers câbles de données sont disponibles (voir 17.1, manuel 5.2). Tous les appareils ALMEMO® se raccordent très facilement en réseau afin d'acquérir de façon centralisée les mesures de plusieurs appareils éventuellement très distants les uns des autres localement (voir manuel 5.3). Pour la communication avec les appareils en réseau, il est impératif que chaque appareil possède la même vitesse en baud et sa propre adresse, car à chaque commande ne doit répondre qu'un seul appareil. C'est pourquoi avant tout fonctionnement en réseau, tous les appareils de mesure doivent être réglés à des adresses d'appareil différentes. Pour ceci, se servir de la fonction Adresse d'appareil. L'adresse 00 est réglée d'usine à 00 normalement. Vous pouvez la modifier par la saisie de données normale (voir 9.5).

16.6 Vitesse, format de données

La vitesse en baud est programmée sur tous les modules d'interface à 9600 baud en usine. Afin de ne pas avoir de problèmes lors de la mise en réseau de plusieurs appareils, elle ne doit pas être modifiée mais il faut régler l'ordinateur ou l'imprimante en conséquence. Si cela n'est pas possible, on peut saisir en fonction Vitesse les valeurs 1200, 2400, 4800, 9600 bd ou 57.6, 115.2, 230.4, 460.8, 921.6 kBD (observer la vitesse max. du module interface !). Le réglage de la vitesse est mémorisé en EEPROM du module d'interface et vaut ainsi même si on l'utilise avec tous les autres appareils ALMEMO.

Régler la vitesse en fonction (voir 9.5) :

Vitesse : 9600 bd

Format de données : non modifiable 8 bits de données, pas de parité, 1 bit d'arrêt
16. Configuration de l'appareil

16.7 Commande de scrutation
Comme cela a été décrit au chapitre 12, l'acquisition des valeurs max-min et les dépassements de limite ainsi que les sorties analogiques des capteurs standards à la cadence de mesure, ceux des capteurs D7 par le « cycle de scrutation ». La sortie de tous les canaux de mesure sur un ordinateur ou en mémoire peut s'effectuer soit simultanément par ce « cycle de scrutation », soit à intervalles cycliques de grandeur quelconque par le « cycle de sortie ».

16.7.1 Cadence de mesure
Les capteurs standards ALMEMO® (DIGI ou D6) sont scrutés successivement comme sur tous les appareils standards par scrutation des points de mesure en continu, à la « cadence de mesure » (voir manuel 6.5.1.3). La cadence de mesure sur cet appareil ne se base cependant pas sur la vitesse de conversion d'un convertisseur AN mais a uniquement été adoptée en conséquence. Elle détermine donc définitivement la vitesse d'acquisition des capteurs standards et peut se régler par la fonction Cadence de mesure à 2,5 mes/s ou 10 mes/s. Le « temps de scrutation » de tous les capteurs standards actuellement branchés, mesure spéciale comprise, est calculé en permanence et affiché dans la « liste des capteurs » (voir 10). Les valeurs de mesure sont immédiatement traitées en interne et sauvegardée mais pas sorties. Cela est effectué au choix par un cycle de scrutation rapide ou par le cycle de sortie, plus lent.

Fonction Cadence de mesure,
changer par la touche : <SET> Cadence de mesure : 10 mes/s

16.7.2 Cycle de scrutation
Le « cycle de scrutation » sert à l'acquisition des valeurs max-min et des dépassements de limite, ainsi que pour les sorties analogiques des nouveaux capteurs intelligents D7. Lors de la scrutation permanente, les capteurs standards délivrent leurs valeurs à la cadence de mesure (s. 16.7.1), les capteurs D7 avec leur propre temps de mesure individuel, qui est mémorisé dans le connecteur (1 milliseconde à plusieurs minutes). Vous trouverez les temps de mesure dans la liste des capteurs, voir 10. Le cycle de scrutation peut la plupart du temps se régler par <MIN> sur le Temps minimum, afin d'acquérir ainsi les valeurs de mesure dans toute leur dynamique. Aucune mesure inutile n'est ainsi générée car seules sont scrutées celles qui ont été actualisées depuis la dernière scrutation, c.-à-d. qu'avec un bref cycle de scrutation, pendant longtemps seuls les capteurs rapides apparaissent et uniquement lors des grands intervalles, les capteurs plus lents s'ajoutent. Pour la rapidité et la cohérence, il est particulièrement avantageux que tous les capteurs D7 fournissent en parallèle simultanément les valeurs de mesure et qu'elles le doivent pas être mesurées successivement par un convertisseur AN.
Si lors de l'enregistrement, les nombreuses valeurs de mesure à haute cadence ne sont pas nécessaire, il est naturellement possible de régler tout cycle de scrutation plus grand.
Si seuls des capteurs standards sont raccordés et si tous les canaux doivent apparaître ensemble avec le même l'horodatage, il est possible d'utiliser comme cycle de scrutation le temps de scrutation, lequel se sélectionne directement lors de la saisie avec la touche programmable [SCANT].

Saisie cycle de scrutation au format ss.sss : **Cycle de scrutation** : s -
Régler le cycle de scrutation sur **Temps minimum** par : [MIN] 00.001
Régler le cycle de scrutation sur **Temps de scrutation** par : [SCANT] 00.100
Sélectionner la sortie en cycle de scrutation par : ▼ 00.002 s -
Activer la sortie avec la touche : [ON] 00.002 s U
Sélectionner la mémorisation en cycle de scrutation dans les « fonctions de centrale d'acquisition » et l'activer (voir configuration de scrutation 14.5.6).

16.7.3 Cycle de sortie
Pour les applications de mesure sur interface à des cycles relativement grands (à partir de 1 s), il existe le « cycle de sortie » au format hh:mm:ss. Il est également utilisé pour déterminer les valeurs cycliques moyenne, max ou min.

Si sur un canal le mode moyenne CYCL est programmé, les valeurs moyennes, max et min sont effacées dans le cycle !

Saisie du cycle de sortie au format hh:mm:ss : **Cycle de sortie** : 00:01:00 U pour la mesure manuelle, **Mise à zéro** du cycle avec :
Réinitialisation du cycle à 1 min. avec touche : [CLR]
Le format de sortie (voir manuel 6.6.1) ne peut plus être choisi car la plage de valeurs étendue ne peut plus s'afficher qu'au format tableau. Ce format convient bien comme toujours au traitement par logiciels tableurs (voir images imprimées, manuel 6.1).

16.8 Hystérésis
En cas de franchissement de limite, possibilité de régler l'hystérésis d'un état d'alarme dans la plage de 0 à 99 chiffres (10 chiffres par défaut) pour tous les capteurs ensemble dans la fonction **Hystérésis** (voir 15.5 et manuel 6.2.7).
Changer l'hystérésis (0 à 99) voir 9.5: **Hystérésis** : 10

16.9 Paramètres de fonctionnement
Certains paramètres de fonctionnement sont configurables en option logicielle, par l'utilisateur, avec la fonction **Configuration** (voir manuel 6.10.13.2).
Effacer toutes valeurs mesurées au départ d'une mesure
Configuration : -C------
Sortie immédiate sur interface (sur-cadençage) **Configuration** : ----A---
Programmer configuration avec : PROG configuration : -C------
Sélectionner paramètre avec :
Activation/désactivation paramètre avec :
17. Modules de sortie

17. MODULES DE SORTIE

L'appareil de mesure ALMEMO® 202 possède deux prises de sortie femelle A1 et A2 permettant de sortir les valeurs mesurées en analogique ou en numérique ou comme signal d'alarme. Il est en outre possible de déclencher différentes fonctions à l'aide d'impulsions de déclenchement. Afin de répondre à toutes les possibilités mais de minimiser le matériel, toutes les interfaces nécessaires ont été intégrées dans des câbles ou modules de sortie ALMEMO®.

Ces modules de sortie sont détectés automatiquement comme les capteurs et s'affichent dans le menu MODULE DE SORTIE. Les nombreuses possibilités de raccordement sont décrites exhaustivement au chapitre 5 du manuel.

17.1 Câble de données

Tous les câbles de données ALMEMO® et le raccordement aux appareils sont décrits au chapitre 5.2 du manuel. Au chapitre 5.3 du manuel suivent d'autres modules de mise en réseau des appareils. 5.3 Les modules d'interface se branchent sur la prise A1 (2), seul le câble réseau ZA 1999-NK de mise en réseau d'un autre appareil se branche sur la prise A2.

Dans le menu apparaît sous la prise respective :

<table>
<thead>
<tr>
<th>Prise A1</th>
<th>Prise : A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable de données DK</td>
<td>Cable de données DK</td>
</tr>
<tr>
<td>0 : RS232</td>
<td>0 : RS232</td>
</tr>
<tr>
<td>Vitesse : 9600 bd</td>
<td>Vitesse : 9600 Bd</td>
</tr>
</tbody>
</table>

La vitesse de transfert est également mémorisée dans le connecteur du câble.

17.2 Modules de déclenchement et relais

Alors que les modules V5 (ZA 1000-EAK) ne disposent pour commander les périphériques par relais et entrée déclenchement (voir manuel 5.1.2-3) au total que d'une seule variante de fonction pour tous les éléments (voir manuel 6.6.4), les éléments des nouveaux câbles de déclenchement et relais V6 (ZA 1006-EKG) et de la carte analogique de déclenchement et relais ZA 8006 RTA3 peuvent se configurer un à un dans leur variante de fonctionnement. Un maximum de 10 relais ou dont 2 entrées de déclenchement ou un maximum de 4 sorties analogiques sont disponibles. Vous pouvez brancher les modules sur la prise de sortie A2 ou A1 (2).

Pour pouvoir commander tous les éléments, 10 adresses de port sont affectées à chaque prise :

<table>
<thead>
<tr>
<th>Prise</th>
<th>Raccordement</th>
<th>Adresses de port</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Modules de sortie V6 sur prise A1</td>
<td>10..19</td>
</tr>
<tr>
<td>A2</td>
<td>Modules de sortie V6 sur prise A2</td>
<td>20..29</td>
</tr>
</tbody>
</table>
Dans le menu **MODULES DE SORTIE**, vous pouvez sélectionner chacun des éléments des modules de sortie comme suit et en programmer le fonctionnement (voir manuel 6.10.9) :

Tout d'abord, sélectionner le port avec les touches : \(<P>\) : \(\uparrow\) ou \(\downarrow\) par ex. port 0 sur la prise A2 (adresse de port 20) :

L'élément correspondant est détecté :

Relais :

- Relais de type contact N.O. :
- Relais de type contact N.F. :
- Relais type inverseur (Change Over) :

La commande des relais se configure pour les variantes suivantes voir 9.5 :

- 0 : Alarme lorsqu'un canal est perturbé par tous les autres
- 2 : Alarme d'un canal programmé
- 3 : Alarme lorsqu'un seuil max est perturbé par tous
- 4 : Alarme lorsqu'un seuil min est perturbé par tous
- 8 : Commande du relais par interface ou les touches

La variante 2 « affectation int. » est réglée automatiquement lorsqu'un Relais est affecté à une limite (voir 15.12.2).

Pour déetecter les coupures de courant, il est avantageux d'inverser la commande des relais puisqu'en absence de courant, une alarme se déclenche automatiquement. C'est pourquoi les variantes de fonction sont également disponibles en version inversée.

Commande de relais inversée :

- par ex. variante 2 inversée :

L'activation et l'état des contacts réel, qui dépend de la commande et du type de relais, s'affiche dans la ligne suivante.

Activation et **état** du contact relais :

Une activation manuelle des relais à l'aide des touches ou par l'interface autorise la variante de relais n° 8 « commande ext. » (voir manuel 06/10/2010).

Variante relais 8 :

Activation manuelle des relais par :

MODULES DE SORTIE

Prise : A2 ZA 8006 RTA3
Port : 20
Relais : Contact n.o. 0.5A
2 : affecté en interne
État : actif fermé

Menu

* Modules de déclenchement et relais

Prise : A2 ZA 8006 RTA3

Port : 20

Relais : Contact n.o. 0.5A

2 : affecté en interne

État : actif fermé

Commande de relais inversée :

-2 : affecté en interne inversé

L'activation et l'état des contacts réel, qui dépend de la commande et du type de relais, s'affiche dans la ligne suivante.

Activation et **état** du contact relais :

État : actif ouvert

Une activation manuelle des relais à l'aide des touches ou par l'interface autorise la variante de relais n° 8 « commande ext. » (voir manuel 06/10/2010).

Variante relais 8 :

Activation manuelle des relais par :

ON ou **OFF**
17. Modules de sortie

Entrées de déclenchement
Pour commander la séquence de mesure, 2 entrées de déclenchement (touches ou optocoupleur) sont disponibles sur les ports 8 et 9. Vous pouvez sur le RTA 3 d’abord configurer la source du déclenchement « Touche » et/ou « Optocoupleur » à l’aide des touches PROG , ▲/▼ ... et PROG ou désactiver complètement la fonction de déclenchement avec "arrêt", par mesure de sécurité.

Les fonctions de déclenchement suivantes sont programmables en variante :

0 : Départ et arrêt d’une mesure 0 : Start/Stop
1 : Scrutation unique manuelle des points de mesure 1 : Scrutation
unique
2 : Supprimer toutes les valeurs max. et min. 2 : Effacer les valeurs max; mini
3 : Impression mesure 3 : Imprimer
4 : Départ et arrêt d’une mesure commandés par seuil 4 :
Start/Stop sur commande de niveau
8 : MAZ de la mesure 8 : Mise à zéro mesure
-5 : appel de la macro 5 (voir manuel 6.6.5) -5 : Macro5
-6 : Appel de la macro 6 -6 : Macro6
-7 : Appel de la macro 7 -7 : Macro7
-8 : Appel de la macro 8 -8 : Macro8
-9 : Appel de la macro 9 -9 : Macro9

17.3 Sorties analogiques

Modules de sortie V5
Pour permettre l’enregistrement analogique de mesures, vous pouvez brancher sur les prises A1 et/ou A2 (2) des modules de sortie V5 avec une sortie analogique commandée par l’appareil, par ex. des câbles d’enregistrement ZA1601-RK (voir manuel 5.1.1).

Sélectionner la prise avec les touches :

Les modes de sortie suivants peuvent être programmés en variante :

0 : Mesure du canal de mesure sélectionné : 0 : canal mes. select. M00
2 : Mesure d’un canal programmé : 2 : affecté en interne M01
8 : Sortie analogique programmée (voir ci-dessous) : 8 : commande ext.

En-dessous, la valeur analogique est indiquée en digits :

Valeur anal. : 08345
Selon la sortie analogique, on obtient les **signaux de sortie** suivants :

Sortie tension -1.2 ... +2.00 V 0.1 mV/digit
Sorties analogiques

Sortie tension -6.0 ... +10.0 V 0.5mV/digit
Sortie courant 0.0 ...20.0 mA 1 μA/digit

Dans la variante 2 'affectation interne' sélectionnez la fonction Mxx pour programmer le point de mesure devant être édité :

2 : affecté en interne M

Modules de sortie V6
Le nouvel adaptateur analogique à relais et déclenchement V6, le ZA8006-RTA3 (voir manuel 5.1.3), dispose sur les ports 4 à 7 en option de 4 sorties analogiques externes max., configurables séparément même en signal de sortie.

Sélectionner le port avec les touches :
par ex. port 6 sur la prise A2 (adresse de port 26) :

Le module analogique apparaît avec le type et le signal de sortie 10 V ou 20 mA :
Sortie analogique (convertisseur NA externe au module) :
Par les touches, reprogrammable en :
Vous pouvez programmer les mêmes modes de sortie comme variantes que pour la V5 :

0 : Mesure du canal de mesure sélectionné :
2 : Mesure d'un canal programmé :
8 : Sortie analogique programmée (voir ci-dessus) :
La valeur analogique apparaît en V6 avec l'unité :

Sortie analogique programmée (voir manuel 6.10.7)
Si vous voulez démarrer la valeur analogique manuellement ou individuellement par l'interface, choisir la variante 8 « commande ext. » :

Programmer sortie 2.5 V sur sortie 10 V (voir 9.5) :

Échelle de la sortie analogique
Un sous-menu spécifique permet d'étendre sur le canal sélectionné la plage de mesure utilisée effective pour le point de mesure correspondant, par les fonctions Début analogique et Fin analogique, à tous les 10 V ou 20 mA (voir 15.12.3)

Programmer le début de sortie analogique :
Programmer la fin de sortie analogique voir 9.5 :
Seulement sur les sorties analogiques 20 mA :
Choix entre sortie 0-20 mA et 4-20 mA sortie :
18. RECHERCHE DE DÉFAUT

L'appareil de mesure ALMEMO® 202 est configurable et programmable de multiples manières. Il permet de raccorder de nombreux capteurs, des appareils de mesure supplémentaires, des avertisseurs et périphériques. En raison des nombreuses possibilités, il se peut que dans certaines circonstances, il ne se comporte pas comme on s'y attend. Cela n'est pas toujours dû à un défaut de l'appareil mais souvent à une erreur de manipulation, un mauvais réglage ou un câblage inadmissible. Essayer à l'aide des tests suivants, d'éliminer le défaut ou de le définir avec précision.

Défaut : affichage perturbé ou pas d'affichage, pas de réaction des touches
Remède : Vérifier l'alimentation, remplacer les piles, mise en marche/arrêt, éventuellement réinitialisation (voir 7.5)

Défaut : valeurs mesurées incorrectes
Remède : contrôler toute la programmation du canal, en particulier la base et le zéro (Menu programmation capteur et fonctions spéciales)

Défaut : valeurs de mesure instables ou blocage lors du fonctionnement,
Remède : Tester le câblage en vue de toute liaison galv. inadmissible, débrancher tous les capteurs douteux, mettre le capteur à main dans l'air ou brancher un fantôme (court-circuiter sur les tensions, 100 Ω sur capteurs Pt100) et vérifier, puis rebrancher successivement les capteurs et contrôler, si lors d'un branchement une erreur survient, contrôler le câblage, isoler éventl. le capteur, éliminer les perturbations par blindage ou torsade.

Défaut : la transmission de données par l'interface ne fonctionne pas
Remède : vérifier module d'interface, connexions et paramétrage :
Les deux appareils sont-ils réglés sur la même vitesse et le même mode de transfert (voir 16.6) ?
Est-ce la bonne interface COM qui est adressée sur l'ordinateur ?
Test de la transmission de données par un terminal (ALMEMO-Control, WIN-Control ou Terminal WINDOWS) :
Adresser l'appareil par son numéro d'appareil « Gxy » (voir manuel 6.2.1),
Saisir <Ctrl Q> pour XON, si l'ordinateur est à l'état XOFF, lire la programmation avec « P15 » (voir manuel 6.2.3),
Ne tester que la ligne d'émission par entrée du cycle avec la commande "Z123456" et contrôle à l'afficheur
Tester la ligne de réception avec la touche <MANU> et contrôle à l'écran.

Défaut : le transfert de données ne fonctionne pas dans le réseau
Remède : les appareils V7 sont-ils raccordés sur leur propre interface COM ?
Vérifier que tous les appareils sont réglés à des adresses différentes, adresser tous les appareils individuellement par le terminal et la com-
mande « Gxy ».
L'appareil adressé est ok lorsqu'au moins « y CR LF » revient en écho.
Si une transmission n'est toujours pas possible, débrancher les appareils en réseau,
 vérifier tous les appareils individuellement sur le câble de données du calculateur (voir ci-dessus),
 véri fier tout court-circuit ou croisement de câble sur le câblage,
tous les répartiteurs réseau sont-ils alimentés en courant ?
Remettre en réseau et vérifier successivement les appareils (voir ci-dessus)
Si après la vérification ci-dessus, l'appareil ne se comporte toujours pas comme il est décrit dans la notice d'utilisation, l'envoyer alors avec une brève description du défaut et éventuellement une impression de contrôle, à l'atelier de Chevreuse. Pour cela, le logiciel ALMEMO-Control permet d'imprimer les pages d'écran avec la programmation, et d'enregistrer puis d'imprimer un « test de fonctionnement » exhaustif dans la liste des appareils ou en fonctionnement en terminal.

19. DÉCLARATION DE CONFORMITÉ
Nous soussignés, Ahlborn Mess- und Regelungstechnik GmbH, déclarons par la présente que l'appareil de mesure ALMEMO® 202 porte le marquage CE et répond aux dispositions de la directive basse tension ainsi qu'aux exigences essentielles de protection selon la directive relative à la compatibilité électromagnétique 89/336/CEE.
Afin d'évaluer le produit, les essais se sont appuyés sur les normes suivantes :

Sécurité : EN 61010-1: 2001
CEM : EN 61326-1: 2013

En cas de modification du produit sans notre accord, la présente déclaration perd sa validité.
S'il faut prolonger les capteurs, veiller à ce que les câbles de mesure ne che- minent pas avec les câbles de courant fort ou à ce qu'ils soient correctement blindés afin d'éviter tout couplage de signaux parasites.
Lors du fonctionnement de l'appareil, noter ce qui suit :
Si l'appareil est utilisé dans des champs électromagnétiques intenses, il faut s'attendre à une erreur de mesure supplémentaire. À la fin du rayonnement, l'appareil fonctionne à nouveau au sein de ses spécifications techniques.
20. ANNEXE

20.1 Caractéristiques techniques (voir aussi manuel 2.3)

Entrées de mesure :
2 prises ALMEMO® pour connecteur plat ALMEMO®
(uniquement capteurs numériques avec plage DIGI,
capteurs D6 et D7)
Canaux de mesure :
2 canaux primaires, 9 canaux supplémentaires max.
par entrée
pour capteurs doubles et canaux de fonction
Tension d'alimentation capteur :
6 V/9 V/12 V 0.4 A (par adapt. secteur : 12V)
Sorties :
2 prises ALMEMO® pour tous modules de sortie

Équipement :
Afficheur :
graphique 128x64 points, 8 lignes de 4 mm
Manipulation :
7 touches (4 touches progr.)
Heure et date :
horloge temps réel, tamponnée par pile de l'appareil

Tension d'alimentation :
Prise ALMEMO® DC ext. 6...13V CC
Piles :
3 R6 type AA alcaline
Adaptateur secteur :
ZA 1312-NA7 230V CA sur 12 V CC, 1 A
Câble adaptateur à isol. galv. :
ZA 2690-UK 10 à 30 V CC à 12 V CC, 0.25 A
Câble USB d'alimentation/données :
ZA1919-DKU5 5V, 0.4 A
Consommation sans mode actif :
env. 31 mA (à 4.5 V)
Modules d'entrée et de sortie :
avec éclairage :
env. 68 mA (à 4.5 V)
mode veille :
env. 0.05 mA
Boîtier :
L127 x P83 x H42 mm, ABS, poids : 260g env.

Conditions d'utilisation :
Température de fonctionnement: -10 à +50 °C (températ. de stockage : -20 à +60 °C)
Humidité de l'air ambiant : 10 à 90 % h.r. (sans condensation)
20.2 Aperçu des produits
Appareil de mesure spécial ALMEMO 202 pour capteurs numériques ALMEMO

RÉFÉRENCE

2 entrées, 20 canaux max., 2 sorties, interface cascadable,
7 touches, écran graphique LCD, horloge temps réel, centrale d'acquisition par
connecteur mémoire

Référence

MA 202

Options :
étalonnage multipoints,

OA 202-KL

Accessoires :
Connecteur mémoire dont carte micro SD (512 Mo min.) et lecteur
Adaptateur secteur à connecteur ALMEMO 12V, 1A
connecteur ALMEMO® pour alim. électrique ext. 12V, 1A
Câble adaptateur tension continue 10 à 30 V CC, 12 V/0.5A sép. galv.
Câble données ALMEMO® interface USB à sép. galv., max. 921.6 kBd
Câble ALMEMO® d'alimentation/données 5 V,
interface USB, 921.6 kBd max.
Câble de données ALMEMO® à interface V24, sép. galv.,
115.2 kBd max.
Câble réseau ALMEMO®, séparation galv., 115.2 kBd max
Câble adaptateur ALMEMO®-D7 à sép. galv., longueur 25 cm
Câble prolongateur ALMEMO®-D7 sans sép. galv., longueur xx m
Câble d'enregistrement ALMEMO®-1.25 à 2.00 V sans sép. galv.
Câble d'entrée/sortie ALMEMO® V6
pour déclenchement et alarme de seuil
Adaptateur relais et déclenchement ALMEMO®-V6
(4 relais, 2 entrées décl.)
Option 2 sorties analogiques sép. galv. configurable 10 V ou 20 mA

ZA 1904-SD
ZA 1312-NA7
ZA 1312-FS8
ZA 2690-UK
ZA 1919-DKU
ZA 1919-DKU5
ZA 1909-DK5
ZA 1999-NK5
ZA D700-GT
ZA D700-VKxx
ZA 1601-RK
ZA 1006-EGK
ZA 8006-RTA3
ZA 8006-R02

ALMEMO® 202
69
20.3 Index

<table>
<thead>
<tr>
<th>Accessoires</th>
<th>20.2</th>
<th>69</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulateurs</td>
<td>4.2</td>
<td>9</td>
</tr>
<tr>
<td>Action max et Action min</td>
<td>15.12.2</td>
<td>55</td>
</tr>
<tr>
<td>Actions en dépassement de limite</td>
<td>15.12.2</td>
<td>54</td>
</tr>
<tr>
<td>activation</td>
<td>17.2</td>
<td>63</td>
</tr>
<tr>
<td>activation mémoire</td>
<td>14.5.6</td>
<td>44</td>
</tr>
<tr>
<td>adresse d'appareil</td>
<td>16.5</td>
<td>59</td>
</tr>
<tr>
<td>Affectation des relais</td>
<td>15.12.2</td>
<td>54</td>
</tr>
<tr>
<td>Affichage</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Affichage de la mesure et des symboles de contrôle</td>
<td>9.2</td>
<td>22</td>
</tr>
<tr>
<td>Affichage des capteurs</td>
<td>11.1</td>
<td>27</td>
</tr>
<tr>
<td>Alimentation</td>
<td>7</td>
<td>17</td>
</tr>
<tr>
<td>Alimentation capteur</td>
<td>7.4</td>
<td>18</td>
</tr>
<tr>
<td>alimentation de capteur</td>
<td>15.12.4</td>
<td>56</td>
</tr>
<tr>
<td>alimentation externe</td>
<td>7.2</td>
<td>17</td>
</tr>
<tr>
<td>Alimentation externe en tension continue</td>
<td>7.3</td>
<td>17</td>
</tr>
<tr>
<td>ALMEMO-Control</td>
<td>13.2</td>
<td>33</td>
</tr>
<tr>
<td>ALMEMO®-Control</td>
<td>5.1.3</td>
<td>15</td>
</tr>
<tr>
<td>Aperçu des produits</td>
<td>20.2</td>
<td>69</td>
</tr>
<tr>
<td>appareils de mesure V7</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Arrêter</td>
<td>9.1</td>
<td>22</td>
</tr>
<tr>
<td>barre d'état</td>
<td>9.2</td>
<td>23</td>
</tr>
<tr>
<td>Base</td>
<td>15.7</td>
<td>51</td>
</tr>
<tr>
<td>Boîtier</td>
<td>20.1</td>
<td>68</td>
</tr>
<tr>
<td>Câble de</td>
<td>17.1</td>
<td>62</td>
</tr>
<tr>
<td>câble de relais d'alarme</td>
<td>15.12.2</td>
<td>54</td>
</tr>
<tr>
<td>Cadence de mesure</td>
<td>16.7.1</td>
<td>44, 60</td>
</tr>
<tr>
<td>Calcul de la moyenne sur le cycle</td>
<td>14.2.4</td>
<td>38</td>
</tr>
<tr>
<td>Calcul de moyenne</td>
<td>14.2</td>
<td>36</td>
</tr>
<tr>
<td>calcul de moyenne mobile</td>
<td>14.2.1</td>
<td>36</td>
</tr>
<tr>
<td>Calcul de moyenne sur points de mesure</td>
<td>14.2.5</td>
<td>39</td>
</tr>
<tr>
<td>Calcul de valeur moyenne sur le temps</td>
<td>14.2.3</td>
<td>38</td>
</tr>
<tr>
<td>Canaux de capteur</td>
<td>10</td>
<td>26</td>
</tr>
<tr>
<td>Canaux de référence</td>
<td>15.12.6</td>
<td>57</td>
</tr>
<tr>
<td>canaux supplémentaires</td>
<td>8.4</td>
<td>20</td>
</tr>
<tr>
<td>Capteur D6</td>
<td>8.2</td>
<td>19</td>
</tr>
<tr>
<td>Capteur D7</td>
<td>8.3</td>
<td>19</td>
</tr>
<tr>
<td>Capteurs standards (V5)</td>
<td>8.1</td>
<td>19</td>
</tr>
<tr>
<td>caractères alphanumériques</td>
<td>9.5</td>
<td>25</td>
</tr>
<tr>
<td>caractéristique</td>
<td>15.11</td>
<td>53</td>
</tr>
<tr>
<td>Caractéristiques techniques</td>
<td>20.1</td>
<td>68</td>
</tr>
<tr>
<td>carte mémoire</td>
<td>14.5.1</td>
<td>42</td>
</tr>
<tr>
<td>carte relais</td>
<td>15.12.2</td>
<td>54</td>
</tr>
<tr>
<td>carte SD</td>
<td>14.5.1</td>
<td>42</td>
</tr>
</tbody>
</table>
Index

centrale d'acquisition 11.5 30
Changement d'unité 15.8 51
Changer le signe 9.5 25
Choix de plage de mesure 15.9 51
choix du menu 9.1 22
Commande d'une mesure 15.12.2 55
Commande de scrutation 11.4 30
Commande de relais inversée 17.2 63
Commande de scrutation 5.1.3 13
commentaire 15.2 48
compatibilité électromagnétique 19 67
compensation 11.2 27
Compensation de pression atmosphérique 11.2.2 28
Compensation deux points 14.3 40
condensation 4.1 9
Conditions d'utilisation 20.1 68
CONF 15.10 53
configuration 16.9 61
Configuration 16.9 61
Configuration capteur 15.10 53
Configuration de l'appareil 16 58
Configuration de scrutation 14.5.6 44
Configuration des menus utilisateur 13.2 33
Connecteur mémoire 20.2 69
Connecteur mémoire externe 14.5.1 42
consigne 14.3 40
Consignes de sécurité 4 8
constante de temps 14.2.1 37
contraste 16.4 58
contrôle de l'état de l'appareil 9.2 23
contrôle de tension d'alimentation 7.1 17
Correction de la mesure 11.2 27
Correction de pente 15.6 50
Correction du zéro 15.6 50
Cycle de scrutation 16.7.2 44, 60
Cycle de sortie 16.7.3 44, 61
Date 16.1 58
Date et heure de début 14.5.8 47
Début analogique et fin analogique 15.12.3 55
Début et fin analogiques 17.3 65
Déclaration de conformité 19 67
degré de lissage 14.2.1 37
Démarrage et arrêt des mesures 14.5.8 47
Diamètre 14.2.6 40
Drapeaux d'éléments 15.12.7 57
Durée de mesure 14.5.8 47
Échelle 14.4 41
Échelle de la sortie analogique 17.3 65
Éclairage 16.4 58
écran 9.1 22
Éditer la mémoire 14.5.5 44
Édition cyclique 12 31
Édition unique 12 31
Éléments livrés 3.2 7
Élimination 3.3 7
Entrées de déclenchement 17.2 64
Entrées de mesure 20.1 20, 68
Équipement 20.1 68
Espace mémoire 14.5.5 44
étalonnage 15.11 54
Étalonnage multipoint 15.11 53
État de la pile 9.2 23
état des contacts 17.2 63
état tel qu’à la livraison 7.5 18
exposant 15.7 51
Facteur 15.7 51
Facteur de cycle 15.12.1 54
Fonction de sortie 15.12.5 56
fonctionnement en réseau 16.5 59
Fonctionnement sur pile 7.1 17
Fonctionnement sur secteur 7.2 17
Fonctions de centrale 14.5 41
Fonctions spéciales 15.12 54
format de données 16.6 59
Garantie 3.1 6
graphique à barres 13.2 34
Graphique à barres 13.2 34
Heure 16.1 58
heure de fin 14.5.8 47
hystérésis 15.5 50
Hystérésis 16.8 61
INFO 10 26
Interface 16.5 59
interlocuteurs 20.4 75
Introduction 5 10
Isolement 8.5 20
Langue 16.3 58
Largeur 14.2.6 40
Les fonctions de l’ALMEMO 202 5.1 11
Libellé appareil 16.2 58
Libellé canal 15.2 48
Limites 15.5 50
Index

Lissage de la mesure 14.2.1 36
Liste de capteurs 10 26
liste de fonctions 13 32
Liste des points de mesure 11.3 29
Logiciel 5.1.3 15
Max, min et mémoire de valeurs individuelles 14.1 35
Mémoire des valeurs individuelles 14.1 35
Mémorisation cyclique 14.5.4 43
Mémorisation unique 14.5.3 43
Menu Affichage des capteurs 11.1 27
Menu Liste des points de mesure 11.3 29
menu utilisateur 13.2 33
menu utilisateur graphique à barres 13.2 34
Menu utilisateur U1 Commande de scrutation 11.4 30
Menu utilisateur U2 centrale d'acquisition 11.5 30
Menus de fonction 14 35
Menus de mesure 11 27
Menus utilisateur 13 32
Mesure 5.1.2 12
Mesure de débit volumique 14.2.6 39
mesures de débit d'air 14.2.6 39
mettre hors tension 7.5 18
Mise à l'échelle 15.7 50
Mise à zéro mesure 11.2.1 28
Mise en mémoire tampon des données 7.6 18
mise en réseau 16.5 59
Mise en service 6 16
Mise sous tension, hors 7.5 18
Mode Moniteur 14.5.7 46
Mode moyenne 15.3 49
Mode scrutation 14.5.7 45
Mode Séclintégr. 14.5.7 46
Mode veille 14.5.7 45
Modules de déclenchement 17.2 62
Modules de déclenchement et relais 17.2 62
Modules de sortie 17 62
Moyenne sur mesures individuelles manuelles 14.2.2 37
nom de fichier 14.5.1 42
Nombre 14.2.2 37
numérotation de canal 8.4 20
Numérotation des mesures 14.5.2 42
ON 9.1 22
Options 20.2 69
Paramètres de fonctionnement 16.9 61
piles 4.2 9
plage d'affichage 13.2 34
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>polarité</td>
<td>4.2</td>
<td>9</td>
</tr>
<tr>
<td>port</td>
<td>17.2</td>
<td>63</td>
</tr>
<tr>
<td>Pression dynamique</td>
<td>11.2.2</td>
<td>28</td>
</tr>
<tr>
<td>Profondeur</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>Programmation des capteurs</td>
<td>15</td>
<td>11, 48</td>
</tr>
<tr>
<td>psychromètre</td>
<td>11.2.2</td>
<td>28</td>
</tr>
<tr>
<td>Raccordement des capteurs</td>
<td>8</td>
<td>19</td>
</tr>
<tr>
<td>Recherche de défaut</td>
<td>18</td>
<td>66</td>
</tr>
<tr>
<td>rectangle</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>Référence</td>
<td>20.2</td>
<td>69</td>
</tr>
<tr>
<td>réglage du point décimal</td>
<td>15.7</td>
<td>50</td>
</tr>
<tr>
<td>Réinit</td>
<td>7.5</td>
<td>18</td>
</tr>
<tr>
<td>réinitialisation</td>
<td>7.5</td>
<td>18</td>
</tr>
<tr>
<td>Rupture ligne</td>
<td>9.2</td>
<td>23</td>
</tr>
<tr>
<td>Saisie des données</td>
<td>9.5</td>
<td>24</td>
</tr>
<tr>
<td>Saturation O2</td>
<td>11.2.2</td>
<td>28</td>
</tr>
<tr>
<td>scrutation manuelle des points de mesure</td>
<td>14.5.3</td>
<td>43</td>
</tr>
<tr>
<td>section</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>Sélection d'un canal de mesure</td>
<td>11.1.1</td>
<td>27</td>
</tr>
<tr>
<td>Sélection de fonction</td>
<td>9.4</td>
<td>24</td>
</tr>
<tr>
<td>Sélection du canal d'entrée</td>
<td>15.1</td>
<td>48</td>
</tr>
<tr>
<td>simulation de pleine échelle</td>
<td>15.12.7</td>
<td>57</td>
</tr>
<tr>
<td>Sortie analogique programmée</td>
<td>17.3</td>
<td>65</td>
</tr>
<tr>
<td>sortie courant</td>
<td>17.3</td>
<td>65</td>
</tr>
<tr>
<td>Sortie manuelle des points de mesure</td>
<td>12</td>
<td>31</td>
</tr>
<tr>
<td>Sortie par l'interface</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>Sorties analogiques</td>
<td>17.3</td>
<td>64</td>
</tr>
<tr>
<td>surface</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>temps de fonctionnement</td>
<td>7.1</td>
<td>17</td>
</tr>
<tr>
<td>Temps de mémoire</td>
<td>14.5.7</td>
<td>46</td>
</tr>
<tr>
<td>temps de mesure</td>
<td>14.2.3</td>
<td>38</td>
</tr>
<tr>
<td>Temps de scrutation</td>
<td>16.7.2</td>
<td>61</td>
</tr>
<tr>
<td>Tension d'alimentation</td>
<td>20.1</td>
<td>68</td>
</tr>
<tr>
<td>Tension minimale d'alimentisation de capteur</td>
<td>15.12.4</td>
<td>56</td>
</tr>
<tr>
<td>touches</td>
<td>9</td>
<td>22</td>
</tr>
<tr>
<td>Touches de fonction</td>
<td>9.3</td>
<td>23</td>
</tr>
<tr>
<td>touches programmables</td>
<td>9.3</td>
<td>23</td>
</tr>
<tr>
<td>Tube rond</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>Type de gaine</td>
<td>14.2.6</td>
<td>40</td>
</tr>
<tr>
<td>U-capteur min</td>
<td>15.12.4</td>
<td>56</td>
</tr>
<tr>
<td>Valeur analog.</td>
<td>17.3</td>
<td>65</td>
</tr>
<tr>
<td>Valeurs de correction</td>
<td>15.6</td>
<td>50</td>
</tr>
<tr>
<td>Verrouillage de la programmation des capteurs</td>
<td>15.4</td>
<td>49</td>
</tr>
<tr>
<td>Vitesse</td>
<td>16.6</td>
<td>59</td>
</tr>
<tr>
<td>vitesse d'écoulement</td>
<td>14.2.6</td>
<td>39</td>
</tr>
<tr>
<td>WinControl</td>
<td>5.1.3</td>
<td>15</td>
</tr>
</tbody>
</table>
20.4 Vos interlocuteurs
Ahlborn Mess- und Regelungstechnik GmbH,
Eichenfeldstraße 1-3, D-83607 Holzkirchen,
Tél. +49(0)8024/3007-0, Fax +49(0)8024/300710
Internet : http://www.ahlborn.com, courriel : ahlborn@wanadoo.fr
Malgré tout le soin apporté à ce produit, les indications erronées ne sont pas exclues !
Toutes modifications techniques réservées !