Data Acquisition System
ALMEMO® 5990-0 V5

V2.0
18.11.2004

www.ahlborn.com
## Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1    Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.1  Function Range</td>
<td>3</td>
</tr>
<tr>
<td>1.2  Operating Controls</td>
<td>7</td>
</tr>
<tr>
<td>2    Initial Operation</td>
<td>8</td>
</tr>
<tr>
<td>3    Power Supply</td>
<td>8</td>
</tr>
<tr>
<td>3.1  Mains Operation</td>
<td>8</td>
</tr>
<tr>
<td>3.2  External Power Supply</td>
<td>8</td>
</tr>
<tr>
<td>3.3  Switch On/Off</td>
<td>8</td>
</tr>
<tr>
<td>4    Connection of the Transducers</td>
<td>9</td>
</tr>
<tr>
<td>4.1  Transducers</td>
<td>9</td>
</tr>
<tr>
<td>4.2  Measuring Inputs, Additional Channels and Extension</td>
<td>9</td>
</tr>
<tr>
<td>5    Data Acquisition</td>
<td>12</td>
</tr>
<tr>
<td>5.1  Automatic Meas. Point Scan of a Measuring Instrument</td>
<td>12</td>
</tr>
<tr>
<td>5.2  Automatic Meas. Point Scan of several Measuring Instruments</td>
<td>13</td>
</tr>
<tr>
<td>5.3  Data Acquisition via Software</td>
<td>13</td>
</tr>
<tr>
<td>6    Troubleshooting</td>
<td>14</td>
</tr>
<tr>
<td>7    Electromagnetic Compatibility</td>
<td>15</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>Technical Data</td>
<td></td>
</tr>
<tr>
<td>Product Overview</td>
<td></td>
</tr>
<tr>
<td>Your Contacts</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION
The data acquisition system ALMEMO® 5990-0Version 5 is an instrument from the unique product range of measuring devices that are all equipped with the ALMEMO® connector system, which has been patented by Ahlborn GmbH. The intelligent ALMEMO® connector provides important advantages with regard to the connection of sensors and peripherals as all parameters are stored in an EEPROM within the connector. As a result, the programming that usually has to be performed for the connection is not required. All sensors and output modules can be connected to all ALMEMO® measuring devices in the same way. The operation and programming is identical with all units. Therefore, all of the ALMEMO® measuring system items listed below are described, in detail, in a separate ALMEMO® manual that is supplied with every device:

- Detailed description of the ALMEMO® system (manual section 1)
- Overview of the device functions and measuring ranges (manual section 2)
- All sensors with basic principles, operation, technical data (man. section 3)
- The options for connecting existing sensors and electr. signals (man. sect.4)
- All analogue and digital output modules (manual section 5.1)
- The interface modules RS232, fiber optics, Centronics (manual section 5.2)
- The entire ALMEMO® networking system (manual section 5.3)
- All functions and their control via the interface (manual section 6)
- A complete interface command list with all print outputs (manual section 7)

These operating instructions only cover features and controls that are specific for a certain device. As a result, many sections will often provide a note referring to a more detailed description within the manual (man. section x.x.x).

1.1 Function Range
Providing up to 89 measuring inputs and 99 measuring channels the data acquisition system ALMEMO® 5990-0 can be extended to provide a very powerful data acquisition system by simply networking up to 99 decentralised units. Each device consists at least of an enclosure with bus board and the master measuring circuit board ES 5590-G1 with 9 inputs that can, again, be extended by a maximum of 8 passive selector switch boards (ES 5990-MF for ALMEMO® connectors or ES5590-MU for MU connectors) by 10 inputs for each board. The 2 output sockets A1 and A2 of the master module allow for alternatively connecting interface cables with analogue output, digital interface or alarm contacts. A 230V mains adapter is used for the power supply.
SENSOR PROGRAMMING

The measuring channels are automatically programmed by the ALMEMO® connectors of the sensors. However, the user can easily complete or modify the programming via the interface, even without influencing the process of measuring.

Measuring Ranges

There are corresponding measuring ranges for sensors with a non-linear characteristic such as 10 thermocouple types, Ntc and Pt100 sensors, infrared sensors, and flow sensors (rotating vanes, thermoanemometers, pitot tubes). Humidity sensors are available with function channels that also calculate humidity data such as dew point, mixture ratio, vapour pressure and enthalpy. Even complex chemical sensors can be used. The acquisition of measured data from other sensors is easily possible by using voltage, current and resistance ranges with individual scaling in the connector. Existing sensors can be used without problems. Only the corresponding ALMEMO® connector has to be connected using its terminals. Furthermore, there are adapter connectors with an own microcontroller for measuring frequencies and pulses. This way, nearly all sensors can be connected to any ALMEMO® measuring instrument and are interchangeable without requiring any settings.

Function Channels

Maximum, minimum, average values and differences of certain measuring junctions can be programmed as function channels and can be processed and printed like normal measuring junctions. Furthermore, function channels for special measuring tasks are provided to determine temperature coefficients Q/\Delta t and wet bulb globe temperatures.

Dimension

The 2-digit dimension can be altered for each measuring channel so that the display and the printout will always indicate the correct dimension, for example when a transmitter is connected. The conversion from °C to °F is automatically performed according to the dimension.

Name of Measured Values

Sensors can be identified by a 10-digit alphanumeric designation. It is entered via the interface and appears on the printout or display if the evaluation is done via PC.

Correction of Measured Values

For correcting measured values a zero point and slope (gain) correction can be applied to the measured value of each measuring channel. This also allows for sensors to be interchanged that usually, at first, require an adjustment (expansion, force, pH).

Scaling

The base value and the factor allow for a further scaling of the corrected measured value of each measuring channel for zero point and slope (gain). The decimal point position can be set by the exponent.

Limit Values and Alarm

Two limit values (1 max and 1 min) can be set for each measuring channel. An alarm value printout can be performed if a limit value is exceeded and, by means of relay output modules, alarm contacts are provided that can be individually allocated to limit values. As a standard, the hysteresis is set to 10 digits, however, it can also be adjusted.
**Sensor Locking**
All sensor data stored in the EEPROM of the connector can be protected against undesired access by means of a graded locking function.

**MEASUREMENT**
4 measuring channels are available for each measuring input, i.e. it is also possible to evaluate double sensors, individually scaled sensors, or sensors with function channels. The selected measuring point can be scanned with a conversion rate of 2.5 or 10 measurements/second. The measured value is calculated and, if available, provided on the analogue output.

**Measured Value**
A continuous registration of the measured value of the selected measuring point, including an automatic zero point correction and optional correction of the measured value or new scaling. Sensor breakage recognition except with current measurements.

**Analogue Output and Scaling**
By means of analogue start and analogue end the indicated measured value can be scaled so that the resulting measuring range covers the full analogue output range (2V, 10V or 20mA).

**Measuring Functions**
Special measuring functions are required for some sensors in order to achieve an optimal acquisition of measuring data. The cold junction compensation is available for thermocouples, a temperature compensation for dynamic pressure and pH and conductivity probes, and an atmospheric air pressure compensation for humidity sensors and O₂ sensors. With infrared sensors the parameters zero point and slope correction are used for background temperature and emissivity factor.

**Maximum and Minimum Value**
Each measurement involves an acquisition and storing of the maximum and minimum value. These values can be displayed, printed or cleared.

**PROCESS FLOW PROGRAMMING**
A cyclic measuring point scan with a time-based process flow control is required to register the measuring data of all connected sensors. If one active measuring circuit board is available only, it can independently perform the measuring point scan with its own time control, print cycle and measuring cycle and, if fast processing is required, the conversion rate. The measurement can be started and stopped by using the keyboard, the interface, an external trigger signal, the real time clock or an exceeding of limit values. If several active modules or devices are networked an external CPU, either from an ALMEMO® system 5590-3 or a PC with data acquisition software, will be required to perform the process control.

**Time and Date**
The time and date or the pure measuring time are used for recording the measurement.

**Print Cycle**
The print cycle is programmable between 1s and 59h/59min/59s and allows for a cyclic output of measured values to the interfaces or memories and a cyclic averaging.

**Print Cycle Factor**
If necessary, the print cycle factor allows for limiting the data output of particular channels so that an excessive data flow can be limited, especially during data storage.
Measuring Cycle
The measuring cycle, also programmable between 1s and 59h59min59s, is for a cyclic scanning with a display of all measured values, limit value monitoring including alarm message and output of alarm values, averaging and, if necessary, a storage of measured values.

Average Value
The measured values that result from scanning can be averaged as desired either over the total measuring time or over the print cycle time. Function channels are provided for a cyclic output of average values.

Conversion Rate
With ALMEMO® V5 devices, all measuring points can be continuously scanned with the conversion rate (2.5 or 10 meas./s). It is possible to provide an output of all measured values via the interface.

Output
All data logs, measured values and programmed parameters can, via interface, be provided as output to any peripheral equipment. Interface cables are available for RS232, RS422 or Centronics interfaces. The output of measuring data can be selected in list format, columns or spreadsheet format. Files in spreadsheet format can be processed by each spreadsheet software. The print header can be programmed specifically to the company or application.

Networking
The data acquisition system ALMEMO® 5990-0 can be extended by up to 99 further systems or other ALMEMO® devices, either by simply connecting them with network cables or, in case of longer distances, by using RS422 network distributors.

OPTION Data Memory
Each active measuring circuit board can optionally be equipped with real time clock and 500 kilobytes of buffered data memory. Depending on the programming the measured values of all possible measuring point scans or just alarm values can be stored. The memory capacity is ok for up to 100,000 measured values. The memory organisation can be configured as linear or ring memory. The output can be performed via the interface for all output formats. It is possible to select by a certain time interval, number or alarm value.

SOFTWARE
The AMR-Control software, which allows for the entire programming of the sensors, the configuration of the measuring instrument and, if available, the read-out of the data memory is supplied with each ALMEMO® manual. The integrated terminal also allows for online measurements by using a measuring circuit board. The WINDOWS® software packages, Win-Control and DATA-Control, are available for data acquisition of networked devices and modules, graphical presentation and complex data processing.
1.2 Operating Controls

Standard Equipment:
(1) Plug-In Module ES 5590-G1: Active Master Meas. Circ. Bd. ALMEMO®
   extendible with passive selector switch boards
   M00 to M08 9 meas. inputs for all sensors with ALMEMO® connect.
   M10 to M38 max. 27 add. channels for double sensors and arithm. chann.
   A1 V24 interface to PC with cable ZA 1909-DK
   V24 fiber optics cable (ZA 1909-DKL)
   RS 422 network distributor (ZA 5099-NV)
   A1 or A2 analog output with cable ZA 1601-RK
   A2 networking with network cable ZA1999-NK
   2 alarm outputs with cable ZA 1000-EGK
   2 relay outputs with cable ZA 1000-EAK
   2 CODE SWITCHES module address 00 to 99 internally on-board

Extension with Passive Selector Switch Boards:
(2) Plug-In Module ES 5590-MF: Passive Selector Switch Board ALMEMO®
   Mx0 - Mx9 10 measuring inputs for all sensors with ALMEMO® conn.
   Mx0+10 - Mx0+39 max. 30 add. chann. f. double sensors and arithm. chann.
   A1 2 alarm outputs with cable ZA 1000-EGK
   1 CODE SWITCH board number 0 to 7 internally on-board

(3) Plug-In Module ES 5590-MU: Passive Selector Switch Board MU
   Mx0 to Mx9 10 meas. inputs for analogue sensors without power supply
   LV max, LV min 2 alarm outputs f. all meas. points of the plug-in module
   1 CODE SWITCH board number 0 to 7 internally on-board

(4) Socket U-DC 12VDC ±5% for mains adapter ZB 3090-NA, 12V, 0.2A

ALMEMO® 5990-0
2. INITIAL OPERATION
1. Connect the transducers to the sockets Mxx (1), see 4.
2. For power supply connect mains adapter to socket U-DC (4), see 3.1
3. Data output to printer or computer
   Connect peripheral device via data cable to socket A1, see manual 5.2.
   Set 9600 baud, 8 data bits, 1 stop bit, no parity at peripheral device.
   Enter time and date as required, see manual 6.2.8.
   Program print cycle and output format, see manual 6.5.2/6.5.5
   Start and stop the automatic measuring point scan, see manual 6.6.
4. Data acquisition via computer
   Connect PC via data cable to socket A1 of the master board, s. man. 5.2.1.
   Set 9600 baud, 8 data bits, 1 stop bit, no parity at peripheral device.
   Activate and start the data acquisition software.
5. Monitoring of limit values
   Enter the limit values, see manual 6.3.9.
   Program the measuring cycle, see manual 6.5.3.
   Connect alarm device via alarm module to socket A2, see man. 5.1.2/5.1.3
   Start and stop the automatic measuring point scan, see manual 6.6.

3. POWER SUPPLY

3.1 Mains Operation
The universal mains adapter ZB 3090-NA for 230VAC to 12VDC, 0.2A, is used
for the power supply of the measuring instrument. It is connected to the socket
U-DC (4) and is locked by turning it to the right.

3.2 External Power Supply
It is also possible to connect another DC voltage 7...13 V to socket (4). The
cable ZB 5090-EK with 2 banana plugs is used for the connection. However, if
an electrical isolation between the power supply and the sensors is required or
if a wider input voltage range 10...30V is required, the electrically isolated
connecting cable ZB 3090-UK must be used. This allows the measuring
instrument to be operated with 12V or 24V mains supplies.

3.3 Switch On/Off
When disconnecting the power supply the momentary operation status of the
system is lost. However, the device configuration and the programming of the
sensors in the ALMEMO® connectors will not be influenced at all.
4. CONNECTION OF THE TRANSDUCERS

Any ALMEMO® sensors can be connected to the ALMEMO® input sockets Mxx of the device. For connecting existing sensors it is only necessary to connect a corresponding ALMEMO® connector.

4.1 Transducers

A detailed description of the comprehensive ALMEMO® sensor range (s. man. sect. 3) and the connection of existing sensors (s. man. section 4) to the ALMEMO® instruments are provided in the ALMEMO® manual. All standard sensors with ALMEMO® connector usually have the measuring range and dimension already programmed and can be immediately connected to any input socket. A mechanical coding ensures that sensor and output modules can only be connected to the correct sockets. Furthermore, each ALMEMO® connector has two locking levers that snap in when the insertion into the socket is established and that prevent a disconnection caused by pulling the cable. Both levers must be pressed on the sides for disconnecting the connector.

The programming of the sensor connectors can only be altered via the serial interface on the ALMEMO® 5990-0 (see man. section 6). However, this can be performed using very simple commands with a PC, via the configuration software AMR-Control or via a terminal (e.g. Windows Terminal). By storing the data in the connector the programming can also be performed using ALMEMO® 2290 series handheld instruments via keypad. In all cases the sensor connector must be connected to the selected channel. When programming, it must be considered that factory-set parameters are protected with a locking mode against unintentional alteration and that the locking level must be decreased if an alteration is required. The connectors ZA9000-FS or ZA5590-MU are not locked and, therefore, most suitable for self-programming.

4.2 Measuring Inputs, Additional Channels and Extension

The master plug-in module ES 5590-G1 of the system ALMEMO 5990-0 has 9 input sockets with, at first, the meas. channels M0 to M8 being allocated to them. However, ALMEMO® sensors can, if required, provide up to 4 channels so that 36 channels are available with 9 input sockets. The additional channels can be especially used with humidity sensors with 4 meas. variables (temperature, humidity, dew point, mixture ratio) or used for function channels. If required, the sensor can also be programmed with several ranges or different scaling or, depending on the pin assignment, 2 or 3 sensors can be combined in one connector (e.g. TE/Ntc, mV/V, mA/V etc.).
The additional meas. channels of a connector are increased in steps of 10 (e.g. the first sensor has the channels M0, M10, M20, M30, the second sensor has the channels M1, M11, M21, M31 etc.).

All analogue inputs are electrically isolated by using photovoltaic relays and a potential difference of 50V at maximum is permissible between them. However, sensors combined within one connector and sensors with an own power supply are electrically connected to each other and must, therefore, be operated in isolation. The voltage applied to the measuring inputs must not exceed ±5V (between B,C,D and A or - respectively).

The cold junction compensation for thermocouple measurement is integrated in socket M3 of the device.

For extending the meas. points 8 passive modules at max. can be used.

The active master meas. circuit board ES 5590-G1 of the data acquisition system can trigger up to 4(24DU) or 8(84DU) passive selector switch boards, each with 10 photovoltaic relays. However, the total number of meas. channels is limited to 99 at max. To be able to adapt the number of sensors and channels to the individual requirements, the number of channels of the master meas. circuit board and the selector switch boards can be independently configured to 10, 20, 30 or 40 (s.man. 6.10.13.1). The numbering of meas. points starts and continues from the last meas. point of the master board. The selector switch boards can be coded from 0 to 7 by the on-board code switches. The duration of a meas. point scan proportionally increases to the number of meas. channels. Analogue output cables can only be connected to the master board.

1. With the passive selector switch boards ES 5590-MF (4) the number of measuring points is increased in steps of 10 electrically isolated ALMEMO® inputs. For monitoring all channels of an individual board limit value relay cables can be connected to all boards. The plug-in module requires 2 PCB slots in the housing.
2. The passive selector switch boards ES 5590-MU (5) also have 10 inputs, which are guided to a 64-pole socket terminal strip. The connection of the sensors is performed via a 10-fold plug ZA 5590-MU each having 4 screw-type terminals A, B, C and D, as each single ALMEMO® connector (see man. 4.1). Double sensors and sensors that require a power supply or an ALMEMO® connector with logic control (e.g. humidity sensors, rotating vanes etc.) cannot be connected. Independent from the configuration of the channel number, 10 channels are only available. The programming can be individually entered for each sensor, however, it is stored in a common EEPROM that is located in the connector. For monitoring the 10 channels of the MU board, two limit value relays, separately for Max and Min, are already mounted on the board and can be connected via the MU connector. The plug-in module requires only one PCB slot.

Extension with Externally Networked Modules or Devices:

3. In addition, the extension of the measuring points is also possible via any external ALMEMO® devices with serial interface. They are connected to the socket A2 of the master board ES5590-G1 via network cables or network distributors (see manual 5.3). It is just necessary to ensure that the data acquisition system 5990-0 and all external devices are set to the baud rate 9600 and that they have different addresses. The addresses must be continuously available, however, their sequence within the network is of no importance.

The plug-in board ES5590-G1 of the ALMEMO 5990-0 has two code switches for setting the address. For setting the address the four screws of the plug-in board must be released and the plug-in module must be pulled out.

Example: Module Address 01

<table>
<thead>
<tr>
<th>S2</th>
<th>S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Module Address 01

ALMEMO® 5990-0
Example for a configuration:

5. DATA ACQUISITION

The data acquisition system ALMEMO® 5990-0 provides the following options for data acquisition:

1. Continuous measurement of a selectable meas. point, see manual 6.4
   Output of measuring data to the analogue output, see manual 5.1.1.
2. Single measuring point scan of a measuring circuit board, see man. 6.5.1.1
3. Cyclic measuring point scan of a measuring circuit board, see man. 6.5.1.2
4. Continuous measuring point scan, see manual 6.5.1.3

Measuring point scans can be used to acquire and to document data from the selected measuring point and also from other measuring points. For measuring point scans the system must generally be connected to an independent data acquisition system ALMEMO® 5590-3 or to a computer via interface module (see manual 5.2/3).

5.1 Automatic Measuring Point Scan of one Meas. Instrument

If the data acquisition systems consists of only one active module, possibly also with selector switch boards, it can automatically perform measuring point scans and can provide a data output via interface with an independent time control and measuring and print cycle. The measurement is also started and stopped via the interface or a trigger cable (see man. 6.6). By using terminal software on a PC (AMR-Control or Windows Terminal) it is possible to save the
measured values on-line in a file and to evaluate them subsequently by means of spreadsheet software (see manual 6.1).

**The programming of the process flow control** is also performed via the serial interface; ideally by using the configuration software AMR-Control or by using a terminal (PC) (see manual 6.5, 6.6).

With the option **data memory** all possibilities regarding the data storage are provided according to the manual section 6.9. As a standard, all single and cyclic measuring point scans are stored in the print cycle. The measuring data can be provided in various output formats to be transmitted and evaluated on a computer.

### 5.2 Automatic Measuring Point Scan of several Meas. Instruments

As described in section 4.2 the data acquisition system ALMEMO® 5990-0 can consist of several networked modules and devices. For communication with networked modules it is mandatory that each module has its own address as only one module is allowed to respond to each command. The measuring point scan of several modules can only be performed with a higher CPU that also performs the addressing of the modules. Within the ALMEMO® range of measuring instruments the system ALMEMO® 5590-3 is equipped with a CPU that performs this task. The system ALMEMO® 5990-0 can be connected as an external system. The CPU performs, with an own real time clock, cyclic measuring point scans of all modules and, as required, stores the data in an own data memory.

### 5.3 Data Acquisition via Software

Alternatively, it is possible that networked modules or devices can be operated via data acquisition software on a computer. Two software packages are available for cyclic addressing of the modules and data scanning:

1. Win-Control (Windows 3.xx, 95, 98 and NT)
2. Data-Control (Windows 3.xx, 95 and 98)

All software packages allow for online display of data as line chart, bar chart or table and for data storing. Furthermore, it is also possible to recall, evaluate and to print the data offline.
6. TROUBLESHOOTING

The data acquisition system ALMEMO® 5990-0 can be configured and programmed in many different ways. It allows for a connection of many different sensors, additional measuring instruments, alarm signalisers and peripheral devices. As a result, it is possible that, under certain conditions, it does not perform as the user would expect. In most cases this will not be related to a defective device but to operating errors such as wrong settings or an inadmissible wiring. The following tests should be performed to correct or to correctly identify the error.

**Error:** Incorrect measured values.
**Remedy:** Check the programming of the channel thoroughly (AMR-Control), Query the entire programming using the command P15 (see manual 6.2.3) and t1 P15 (see manual 6.10.1).

**Error:** Varying measured values, cyclic measuring point scan stops.
**Remedy:** Check cabling for inadmissible electrical connection.
Dissect output modules, disconnect suspicious sensors and replace by hand-held sensors operated in air or by dummies (short circuit A-B at thermocouples, 100Ω resistance at Pt100 sensors).
If the error is corrected by this, re-connect sensors and modules successively and check.
If an error occurs at a connection, check the wiring, isolate the sensor, if necessary; prevent influences from disturbances by shielding or twisting.

**Error:** Data transmission via interface does not function.
**Remedy:** Check power supply, switch off and then switch on again, check interface module, connections and setting:
Are both devices set to the same baud rate and transmission mode (see manual 6.10.12)?
Is the correct COM interface addressed at the computer?
Is the printer set to ONLINE mode?
Are the handshake lines DTR and DSR active?
A small interface tester with LEDs is very useful for checking the data flow and the handshake lines (during standby mode the data lines TXD and RXD are on a negative potential of approximately -9V and the diodes are illuminated green. The handshake lines DSR, DTR, RTS and CTS have a positive voltage of approximately +9V and the LEDs are illuminated red. During the data transmission the data lines must flash red).
Test the data transmission by using a terminal (AMR-Control, WIN-Control, DATA-Control, WINDOWS Terminal):
Check module address and code switch setting on the PCB (s. 4.1).
Address the module with the device number $G_{xy}$ (see man. 6.2.1).
Query the programming with using $P_{15}$ (see manual 6.2.3).

**Error:** Data transmission within network does not function.

**Remedy:**
- Check that all modules are set to different addresses,
- address modules individually via terminal and command $G_{xy}$.
- Addressed module is ok when the feedback is at least $y$ CR LF.
- If data transmission is still not possible, disconnect external devices
  or even active internal modules and check them individually using the
  data cable of the computer (see above),
- check the wiring for short circuit or twisting,
- Are all network distributors supplied with power?
- Network and check the devices successively again (see above).

If the device is, after the above inspections, still not performing as specified in the operating instructions, it must be sent to the factory in Holzkirchen, Germany, including a short report and, possibly, control printouts. The software AMR-Control allows to print the monitor pages including the programming and also to save the terminal operation and to print it out.

### 7. ELECTROMAGNETIC COMPATIBILITY

The data acquisition system ALMEMO® 5990-0 meet the electromagnetic compatibility (EMC) safety requirements specified in the relevant CE directive issued by the council for the alignment of legal regulations of the member states (89/336/EWG).

The following standards have been applied for the evaluation of the product:

- IEC 61000-6-1:1997
- IEC 61000-6-3:1996
- IEC 61000-4-4: 1995+A1:2000 2kV

The following notes must be observed when operating the instruments:

1. If the standard sensor cables (1.5m) are extended it must be considered that the measuring lines are not guided together with power mains and that they are appropriately shielded to protect against any coupling of disturbance signals.
2. If the instrument is operated within strong electromagnetic fields an additional measuring error must be expected (<50mV at 3V/m and 1.5m thermocouple transducers). After the irradiation the device operates again within the specified technical data.
### Technical Data
(see also manual section 2.2)

#### Measuring Inputs:
- **Master Meas. Circ. Bd. ES 5590-G1**: 9 ALMEMO® sockets for flat connector
- **Measuring channels**: 9 prim. chann. electr. isol., max. 27 add. channels for double sensors and function channels
- **Sensor voltage supply**: approx. 12V, max. 100mA
- **Free slots for extension**: 32DU: 6, 84DU: 16
- **Selector switch boards ES 5590-MF**: 10 ALMEMO® sockets for flat connector
- **Selector switch boards ES 5590-MU**: 10 inputs through 10-fold MU connector
  - 10 chann. electr. isol., 30 add. chann., 2 slots
  - 10 channels electr. isol., 1 plug-in slot

#### Equipment:
- **Microprocessor**: HD 6303 Y
- **Time and date**: software clock not buffered
- **Option S**: real time clock and data memory 500kB for 100000 meas. val. buffered with Lithium battery

#### Outputs:
- **Interface, networking**: ES5590-G1, ES5590-MF, ES5590-MU
- **Analog output**: A1 or A2
- **Limit value signals**: A2 A1, 2 opto relays Max and Min

#### Voltage Supply:
- **Mains adapter**: 7 to 13VDC not electrically isolated
- **Plug-in module ES5590-G1**: approx. 10 mA without I/O modules
- **Plug-in module ES5590-MF**: approx. 20 mA without I/O modules
- **Plug-in module ES5590-MU**: approx. 2 mA

#### Housing Dimensions:
- **19" desktop housing 32DU**: W 179 x H 158 x D 232 mm, 6 slots
- **19" desktop housing 84DU**: W 444 x H 158 x D 232 mm, 19 slots
- **19" sub rack 84DU**: W 483 x H 132.5 x D 273 mm, 19 slots
- **Operating/storage temperature**: -10 ... +60 °C / -30 ... +60 °C
- **Humidity of ambient air**: 10 ... 90 % rH (non-condensing)

#### Extent of the Delivery:
- Data Acquisition System ALMEMO 5990-0
- Mains adapter ZB 3090-NA 12V/0.2A
- Operating Instructions ALMEMO® 5990-1
- ALMEMO® Manual with AMR-Control software
### Product Overview

**Data Acquisition System ALMEMO® 5990-0**

Incl. Master Meas. Module with 9 ALMEMO sensor sockets (36 channels), Cascadeable serial interface, power supply unit 12V, 0.2A

| 19" desktop housing 32 DU, 6 free plug-in slots | MA 5990-0TG3 |
| 19" desktop housing 84 DU, 19 free plug-in slots | MA 5990-0TG8 |
| 19" sub rack 84 DU, 19 free plug-in slots | MA 5990-0BT8 |

Option S: memory 500kB for 100000 meas. values, real time clock | OA 5590-S0 |

**Selector Switch Board** with 10 electrically isolated inputs for ALMEMO flat connector, 10 to 40 meas. channels, output socket for alarm cable, 8 boards at max., space requirement 2 plug-in slots | ES 5590-MF |

**Selector Switch Board** with 10 electr. isol. inputs, sensor connection through 64-pin spring contact strips and ALMEMO 10-fold MU connector, 10 meas. channels (no frequency/double sensors), alarm contacts Max and Min, 8 boards at max., 1 slot | ES 5590-MU |

**ALMEMO® 10-Fold MU Connector** for the connection of 10 sensors and 2 alarm devices | ZA 5590-MU |

**DC Voltage Adapter Cable** 10...30V DC, 12V/250mA electr. isolated | ZB 3090-UK |

**ALMEMO® Recording Cable** no electr. isol. (-1.25...2.0V, 0.1mV/digit) | ZA 1601-RK |

**ALMEMO® V24 Data Cable**, electr. isolated, max. 115.2 kBd, 1mA | ZA 1909-DK5 |

**ALMEMO® V24 Fiber Optic Data Cable**, max. 57.6 kBd, 4mA | ZA 1909-DKL |

**ALMEMO® Network Cable** current loop, electr. isolated | ZA 1999-NK5 |

**ALMEMO® Trigger Cable** with key | ZA 1000-ET |

**ALMEMO® Trigger Cable** with optocoupler input 4..30V | ZA 1000-EK |

**ALMEMO® I/O Cable** for Triggering and Limit Value Alarm | ZA 1000-EGK |

**ALMEMO® Relay Trigger Analog Adapter** (4 relays, 2 trigger inputs) | ZA 8000-RTA |

Option R1, R2, R3: electr. isol. analog output 2V, 10V or 20mA | OA 8000-Rx