Instruction Manual

ALMEMO® 500
Data logger with app

V7 Technology

English
V2.0
21.06.2018
1 Global Overview

Global Overview of the Data Logger

- Coding switch 1
- WiFi socket 2
- Status display 3
- Navigation keys 4
- Status and control lights (CPU card) 5
- Ethernet socket 6
- USB B port 7
- USB A port 8
- ON/OFF key 9
- DC IN socket 10
- Reset push button 11
- ALMEMO® Input sockets 12
- Status and control lights (measuring circuit board) 13
- Earth connection 14
- Battery pack (see page 3 and 14)
Global Overview of the Battery Pack

ON LED 22
SLOW CHARGE LED 23
FAST CHARGE LED 24
CHARGE STATE LEDs 25
DC IN socket 26

Reset push button of the battery pack 27

Battery sockets 28
2 Table of Contents

1 Global Overview .. 2
2 Table of Contents .. 4
3 Explanation of Symbols .. 8
4 Safety Note .. 9
 4.1 How to avoid Measuring Errors and product damages .. 9
 4.2 Intended Use ... 10
5 Product .. 11
 5.1 Scope of Delivery ... 11
 5.2 Description of the Tablet ... 12
 5.3 Description of the Data Logger ... 12
 5.4 Description of the Battery Pack (optional) .. 14
6 Initial Operation ... 15
7 Usage ... 19
 7.1 How to prepare the Measurements .. 19
 7.1.1 How to connect and check the Power Supply .. 19
 7.1.2 How to connect/disconnect Sensors ... 20
 7.1.3 How to switch the Data Logger on/off ... 20
 7.1.4 How to connect the Tablet with the Data Logger .. 21
 7.1.5 How to login to the App ... 21
 7.2 How to perform Measuring Operations .. 22
 7.2.1 How to start/stop Measuring Operations ... 22
 7.2.2 How to monitor a Measuring Operation .. 23
 7.2.3 How to detect a Sensor Breakage .. 29
 7.2.4 How to set the Data Storage Mode ... 29
 7.2.5 How to manage Measurements .. 30
 7.2.6 How to query the Memory Status .. 31
 7.3 How to export Measurements from the Database .. 32
 7.4 How to connect the Data Logger to other Devices .. 34
7.4.1 How to connect a PC to the Data Logger ..34
7.4.2 How to use the ALMEMO® 500 App on your PC..........................36
7.4.3 How to connect an iOS Device to the Data Logger37
7.4.4 How to use the ALMEMO® 500 App on Android Devices38
7.4.5 How to use AMR WinControl..38
7.4.6 How to use ALMEMO® Control ..39
7.4.7 Further Connection Possibilities...40
7.5 Overview on the Menus of the App ...42

8 Settings..44
8.1 How to set the Data Logger..44
 8.1.1 How to set Time and Date...44
 8.1.2 How to set the Storage Cycle Interval of the Data Logger44
 8.1.3 How to set Storage Location and Size of the Database46
 8.1.4 How to change the Device Address ..46
 8.1.5 How to set Start and Stop Mode ..47
 8.1.6 How to configure the Access Point..48
 8.1.7 How to assign a static IP Address to a CPU Card52
 8.1.8 How to query Information on the Data Logger52
8.2 How to set the Measuring Circuit Board...53
 8.2.1 How to change the Measuring Circuit Board Address53
 8.2.2 How to set the Storage Cycle Interval of a Measuring Circuit
 Board..53
 8.2.3 How to query the Storage Cycles of all Measuring Circuit
 Boards..55
 8.2.4 How to set the Conversion Rate of the Measuring Circuit
 Board..55
 8.2.5 How to set Macros...56
 8.2.6 How to set Operating Parameters..57
 8.2.7 How to set the device compensation values............................58
 8.2.8 Information on how to query the Measuring Circuit Board59
2 Table of Contents

8.3 How to set a Sensors ...60
 8.3.1 How to display the Sensor ..60
 8.3.2 How to query the Calibration Data and set the calibration interval ..60
 8.3.3 How to set the Sensor Configuration61
 8.3.4 How to set Measuring Channel Functions62
 8.3.5 How to enable a new Measurement Channel72
 8.3.6 How to disable a Measuring Channel72

8.4 How to set a Measured Value Function73
 8.4.1 How to delete Maximum, Minimum or Average Values73
 8.4.2 How to zero-set or adjust the Measured Value73

8.5 How to configure the ALMEMO® 500 App74
 8.5.1 How to manage User Rights ...74
 8.5.2 How to query the WLAN SSID of the connected Data Logger ...75
 8.5.3 How to log out as a User ..75

9 Access Data ..76

10 Operation with a Battery Pack (optional)77

10.1 Before the First Use of the Battery Pack77

10.2 How to remove the Battery Pack from the Housing of the Data Logger ...77

10.3 How to charge Batteries ..78

10.4 How to query the Battery Power Supply78

10.5 How to deactivate Measuring Channels of the Battery Pack79

10.6 How to clean the Battery Pack ..79

10.7 How to query Information about the Battery Pack80

10.8 How to ship the Battery Pack ..80

11 Maintenance and Care ..81

12 Questions and Answers ..82

13 Warranty and Disposal ..84
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Data</td>
<td>85</td>
</tr>
<tr>
<td>Declaration of Conformity</td>
<td>87</td>
</tr>
<tr>
<td>Subject Index</td>
<td>88</td>
</tr>
</tbody>
</table>
3 Explanation of Symbols

Safety note

! Requirement

→ Request

Notice

➢ Result

3 Reference referring to the general illustration of the data logger (page 2)

Back Text displayed within a software
4 Safety Note

→ Please read the Instruction Manual carefully and follow the safety and warning notes.

→ Only operate the measuring instrument in accordance with the intended use.

→ Do not operate the device outside of the indicated environmental conditions. Only operate the device within the technical specifications (see chapter 14 Technical Data).

→ Only open the device for maintenance and care purposes, see chapter 11 Maintenance and Care.

→ Make sure that the static electricity has been discharged before you touch the sensor cable.

→ Do not install sensor cables close to electric power lines.

→ Do not operate the device near fuels or chemicals, not on blasting areas or petrol stations.

→ Only use the supplied mains adapter. Do not open or manipulate the mains adapter.

→ Do not use the device when damaged due to electrostatic discharge, radiation or lightning.

→ Make sure that the batteries are not mechanically damaged, short circuited, or thrown into a fire.

4.1 How to avoid Measuring Errors and product damages

→ Please wait for the device to adapt to the ambient temperature before starting to operate it.

⚠️ Bringing the device from a cold environment into the operating room may cause condensation on the electronics assembly. Regarding thermocouple measurements, severe temperature changes may cause larger measuring errors.

→ In case a battery pack is used in your system, thermocouple measurements using the device-internal cold junction temperature
4 Safety Note

should be run – if possible – in battery operation (no mains adapter connected).

Using another operating mode (e.g. mains unit operation) for thermocouple measurements may lead to increased measuring errors.

→ Sensors whose power is supplied by the data logger are not galvanically isolated. In case galvanical isolation is required, please contact the technical support (Phone: 08024/3007-38, email: help@ahlborn.com).

→ When connecting a mains adapter please consider the mains voltage.

→ Pay attention to the maximum load capacity of the sensor power supply.

→ Do not make any changes to the measuring device.

→ Do not connect unsuitable peripheral devices to the measuring instrument.

→ Avoid heat, large temperature fluctuations, and increased electromagnetic radiation during operation.

4.2 Intended Use

The ALMEMO® 500 data logger is a measuring instrument and is intended only for measuring various measuring variables. The data logger supports the connection of a vast variety of sensors and peripheral devices with various special features.

A detailed overview on the intended use and on possible measuring tasks is given in the ALMEMO® Manual. To avoid measuring errors and damages to the device, it is recommended to read the relevant chapter for each measuring task and to pay attention to the given notes.

Please pay attention to all information and safety notes listed in this Instruction Manual. Only use the measuring instrument within the technical specifications (see chapter 14 Technical Data). Any other use is considered inappropriate and may result in damage to property or personal injury. Any such usage will result in the loss of the warranty rights.

→ In case of doubt, please contact our technical support (Phone: 08024/3007-38, email: help@ahlborn.com).
5 Product

5.1 Scope of Delivery

→ When unpacking, please pay attention to damages to the measuring instrument as well as to the completeness of the delivery:

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>measuring instrument ALMEMO® 500 with 2 measuring circuit boards ES500MA10 and 1 CPU card ES500CPU</td>
</tr>
<tr>
<td></td>
<td>12 VDC mains adapter (ZB1212NA10)</td>
</tr>
<tr>
<td></td>
<td>WLAN antenna</td>
</tr>
<tr>
<td></td>
<td>USB data cable</td>
</tr>
<tr>
<td></td>
<td>Ethernet data cable</td>
</tr>
<tr>
<td></td>
<td>Tablet including mains unit and USB charging cable</td>
</tr>
<tr>
<td></td>
<td>Mount for the tablet</td>
</tr>
<tr>
<td></td>
<td>CD ALMEMO® software & documentation with the ALMEMO® Control software, ALMEMO® Manual and useful accessories</td>
</tr>
<tr>
<td></td>
<td>Present copy of the Instruction Manual,</td>
</tr>
</tbody>
</table>

→ In the event of a damage caused during transportation, please keep the packaging material and contact the supplier immediately.
5.2 Description of the Tablet

You will find the description of the provided tablet SM-T365 in the included Instruction Manual provided by SAMSUNG.

5.3 Description of the Data Logger

You can find a detailed illustration of the data logger on page Fehler! Textmarke nicht definiert..

Key and switch functions of the data logger

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Label</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding switch 1</td>
<td>Coding switch 1</td>
<td>Configuration of the measuring circuit board addresses from G00 to G89</td>
</tr>
</tbody>
</table>
| Navigation keys 4 | Navigation keys 4 | Allow you to
- navigate through different menu pages
- reset the access point
- start firmware updates
- reset and retrieve the data logger |
| ON/OFF key 9 | ON/OFF key 9 | Pressing the key shortly: the device is switched on respectively off
Pressing the key long: the device powers off the supply voltage (not recommended) |
| Reset push button 11 | Reset push button 11 | Pressing the button for at least 3 seconds: triggers a reset of the data logger.
To be able to press the button, a pointed object is required. |
Measuring channels

Every measuring circuit board (in the standard configuration two measuring circuit boards are included) features ten ALMEMO® Input sockets 12. To each input socket, a single ALMEMO® plug can be connected. V5, V6 and D6 sensors can offer up to four measuring channels each. D7 sensors can offer up to ten measuring channels.

Every measuring channel has a unique channel number.

Integrated access point

The data logger features an integrated access point that sets up a WLAN network.

This access point features a static IP address (in the delivery state 192.168.1.1) and is configurable via a website.

As delivered from the factory, the internal DHCP server of the access point is enabled and automatically assigns one IP address to the CPU card and to all connected devices each.

The Status display 3 shows the IP address of the CPU card in the menu. “1) Network Conf.”.

By means of the IP address of the CPU card you can specify within the app which data logger you want to operate.

![Graph](image.png)

Regarding the technical data of the data logger, please refer to chapter 14 Technical Data.
5.4 Description of the Battery Pack (optional)

🔗 You can find a detailed illustration of the battery pack on page 3.

Intelligent charging mechanism

In case battery packs are used within the data logger (a maximum of 3 battery packs can be used), an intelligent charging mechanism will be activated to protect the data logger against overload (simultaneous operation and charging process). In case several battery packs are used, the device addresses of the battery packs must be preset at the factory.

Technical data

<table>
<thead>
<tr>
<th>Technology</th>
<th>Lithium-ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery capacity</td>
<td>15.6 Ah, 3.7 V</td>
</tr>
<tr>
<td>Operating time at 500mA (12V) current consumption</td>
<td>Approx. 6 hours</td>
</tr>
<tr>
<td></td>
<td>The operating time may vary depending on the connected sensor technology and on the sampling rate used.</td>
</tr>
</tbody>
</table>

Subject to technical modifications!

🔗 In case the residual charge of the battery is less than 5%, an acoustic signal will sound three times for 2 minutes and the Status display 3 will show the message “*Battery* Charge < 5 % Shut down in …s”. In that case, please connect the mains adapter to the battery pack or to the CPU card. If you do not connect the data logger to the mains adapter, the data logger will automatically shut down after two minutes. The current measurement will be stopped; the saved measurement data and the time will be preserved.
6 Initial Operation

1. Plug the DC connector of the mains adapter into the DC IN socket 10 and connect the mains plug to a wall socket.

 In case you intend to use one or several battery packs, please wait until the batteries are fully charged, all CHARGE STATE LEDs 25 have lightened up and the FAST CHARGE LED 24 respectively the SLOW CHARGE LED 23 has gone out.

2. Connect the WLAN antenna to WiFi socket 2.

3. Connect the ALMEMO® plugs of the desired sensors to the ALMEMO® Input sockets 12.

4. Please check the setting of the Coding switch 1.

 One measuring circuit board needs to have the measuring circuit board address G00 and the other measuring circuit board needs to have the measuring circuit address G01.

 Please change the measuring circuit board address of any replacement measuring circuit board and in case of a system expansion (see chapter 8.2.1 How to change the Measuring Circuit Board Address). Several measuring circuit boards must not have the same measuring circuit board address. The addresses from G90 upwards are reserved i.a. for battery packs and must not be used for measuring circuit boards.

5. Shortly press the ON/OFF key 9.

 ➢ The ON LED of the Status and control lights (CPU card) 5 lights up.
 ➢ The Ahlborn logo appears on the Status display 3 and shortly afterwards, the text “Web Service Initialization…” will be displayed.
 ➢ On the Status display 3 the menu “1) Network Conf.” will be displayed.

 The startup phase takes some time since the data logger needs to be initialized and an integrity check of the measured data storage is executed at each system start.

 Do not disconnect the data logger from the power supply during the startup phase but rather shut down the device – if necessary – in a controlled manner by shortly pressing the ON/OFF key 9 again.
Without any activity of the Navigation keys 4, the Status display 3 enters a power saving mode after a while. Push one of the Navigation keys 4 to reactivate the display.

Steps 6 to 12 describe how to connect the data logger to the Samsung SM-T365 tablet. To connect the data logger to other tablets or smart phones, different action steps might be necessary. The action steps necessary to connect the data logger to an iOS device are listed in the chapter 7.4.3 How to connect an iOS Device to the Data Logger.

6. Press long on the ON/OFF key of the tablet.
 ➢ The tablet will be switched on.

7. Swipe the display to unlock it.

8. Swipe from the upper display edge downwards.
 ➢ The status bar will open.

9. Press long on the icon Wi-Fi:
 ➢ The network overview will open.

10. Select the wireless network ALMEMO_500_[six digit identification number].

You will be able to clearly distinguish between the wireless networks of the measuring devices by means of the six digit identification number. You can also find this number on the nameplate on the bottom of the respective measuring device or on the status display in menu 2) WLAN-SSID.

11. Enter the password ahlborn_wlan.

12. Tap on CONNECT .

13. Press the Home key.

14. Tap on the icon of the ALMEMO® 500 app.
 ➢ The app will open.
15. In the lower part of the display, tap on \textit{Network Settings}.

\begin{itemize}
 \item The network settings will be displayed.
\end{itemize}

16. In the Status display 3 in menu “1) Network Conf.” you will find the IP address. Enter this IP address in the field \textit{IP Address} in the network settings.

17. In the Port field, enter 80.

18. Tap on \textit{Save}. The network settings will be closed.

19. Enter the following login data:

\begin{tabular}{ll}
\textbf{User name} & Almemo500 \\
\textbf{Password} & Ahlborn2016 \\
\end{tabular}

20. Tap on \textit{Login}.

➢ The home display of the app will open.

21. Tap on the icon
➢ The “Display” menu will open.

22. Tap on [Start].
➢ The measurement will be started.
7 Usage

7.1 How to prepare the Measurements

7.1.1 How to connect and check the Power Supply

How to connect the Power Supply

→ Plug the DC connector of the network adapter into the DC IN socket 10 and connect the mains plug to a wall socket.

حاولات: In case you intend to use battery packs, please wait until the batteries are fully charged, all CHARGE STATE LEDs 25 have lightened up and the FAST CHARGE LED 24 respectively the SLOW CHARGE LED 23 has gone out.

The data logger is powered with a supply voltage of 12V DC. The power is supplied by an included mains unit or by optionally available rechargeable battery packs.

How to query the Operating Parameters

→ Press the right one of the Navigation keys 4 repeatedly until the Status display 3 shows menu “5) Supply”.

Alternatively:

1. Log in to the ALMEMO® 500 app, respectively press the Back button repeatedly until the home screen appears.

2. Tap on the button Settings.

3. Tap on the > arrow in the line Power supply.

The operating parameters that can be queried are: supply voltage, CPU voltage, WLAN voltage, USB voltage, remaining time of the battery, battery status, voltage and power of the battery and the mains unit, charging mode, and battery temperature.

To enable the display of the operating parameters of the rechargeable batteries, you need to tick the checkbox next to Update data of battery units, first.
7.1.2 How to connect/disconnect Sensors

How to connect a Sensor

![The data logger needs to be switched off.]

→ Connect the ALMEMO® plugs of the desired sensors to the ALMEMO® Input sockets 12. Make sure that the two locking levers engage correctly.

- All standard sensors with ALMEMO® plugs are generally programmed with measuring range and dimension and can therefore readily be connected to every ALMEMO® input socket.

- The comprehensive ALMEMO® sensor program and the option to connect your own sensors to ALMEMO® measuring instruments are described in detail in the ALMEMO® Manual (see ALMEMO® Manual, 9th edition, 2011, chapter 3 and chapter 4).

How to disconnect a Sensor

![The data logger needs to be switched off.]

→ Press the two locking levers of the ALMEMO® plug and remove it from the input socket.

7.1.3 How to switch the Data Logger on/off

How to switch on the Data Logger

→ Shortly press the ON/OFF key 9.

- The ON LED of the Status and control lights (CPU card) 5 will light up.
- The Ahlborn logo appears on the Status display 3 and shortly afterwards, the text “Web Service Initialization...” will be displayed.
- On the Status display 3 the menu “1) Network Conf.” will be displayed.

- The startup phase takes some time since the data logger must be initialized and an integrity check of the measured data storage is executed at each system start.

- Do not disconnect the data logger from the power supply during the startup phase but rather shut down the device – if necessary – in a controlled manner by shortly pressing the ON/OFF key 9 again.
Without any Navigation key activity, the Status display enters a power saving mode after a while. Push one of the Navigation keys to reactivate the status display.

How to switch off the Data Logger

→ Shortly press the ON/OFF key.

➢ The ON LED of the Status and control lights (CPU card) will go out.

Pressing the ON/OFF key for longer than five seconds, the data logger will shut down in an uncontrolled manner. This is not recommended as it may cause the loss of measured data.

7.1.4 How to connect the Tablet with the Data Logger

The data logger needs to be switched on.

→ Press long on the ON/OFF key of the tablet.

→ Follow the steps 6 to 20 in chapter 6 Initial Operation.

After a successful first login, please change the login data of the access point as well as the password of the WLAN connection (see chapter 8.1.6 How to configure the Access Point).

7.1.5 How to login to the App

The data logger needs to be switched on.

The tablet, the PC, or the iOS device must be connected to the data logger.

1. Tap on the icon of the ALMEMO® 500 app.

➢ The app will open.

2. Enter the following login data.

 User name: Almemo500
 Password: Ahlborn2016

3. Tap on Login.

Regarding the first login, please follow the steps 14 to 20 in chapter 6 Initial Operation.
7.2 How to perform Measuring Operations

7.2.1 How to start/stop Measuring Operations

How to start the Measuring Operation

1. In the home screen of the app, tap on the button

 ➢ The menu Display will open.

2. Tap on

 ➢ The measuring operation will start.

 ➢ The START LED of the Status and control lights (CPU card) will light up.

 ➢ In the header of the app, the arrows of the icon will start flashing.

 ![In case the data storage mode “ring memory” is enabled, the arrows flash in orange.]

 ![In case the data storage mode “linear memory” is enabled, the arrows flash in blue.]

 The first measuring operation will be saved in the data storage mode “ring memory”. When this memory is full, the oldest data will be overwritten.

 Any further measuring operations will be saved in the data storage mode “linear memory”. When this memory is full, the measuring operation will stop automatically.

How to stop the Measuring Operation

1. In the home screen of the app tap on the button

 ➢ The menu Display will open.

2. Tap on the button .

 After a measurement has been started, no further programming is possible. It is not permitted to reconnect sensors, i.e. changes will not be recognized and therefore not be evaluated.
➢ The START LED of the Status and control lights (CPU card) will go out.
➢ In the header of the app, the arrows of the icon will no longer flash.
You will find the buttons and in the menu Memory as well.

7.2.2 How to monitor a Measuring Operation

1. In the home screen of the app, tap on the button.
2. Select the desired measured value presentation.

Channel list Displays all connected measuring channels and their respective measured values.
Measured value display Displays individual measured values.
Line chart Displays plots of several selected measuring channels.
User menu Measuring channels are displayed individually.

Channel list
→ Tap on the tab featuring the icon .
➢ The channel list displays all measuring channels and their parameters.

How to change the displayed Measured Value Functions

1. Tap on the header of one of the three right columns.
2. Tap on the measured value function that shall be displayed.

Measured value display
→ Tap on the tab featuring the icon .
Alternatively
→ In the channel list tap on the line of the measuring channel that shall be displayed in the measured value display.

How to select a Measured Value

1. Tap on the channel number on the upper left side.
2. Tap on the channel number of the measuring channel you want to display.
Line chart

→ Tap on the tab featuring the icon \\
➢ The line graph will open and will feature the time of measurement on the x-axis and the measured value of a dimension on the y-axis.

!’ The line graph always displays the measuring data, which has been recorded since the last login.

If you open a saved measurement during an ongoing measuring operation, the line graph will show the data of the saved measurement. After closing the display of the saved measurement, the line graph will clear itself and then redraw with the current measurement data of the ongoing measuring operation.

The measurement data of the ongoing measuring operation, which is recorded before and at the time the saved measurement is displayed, will not be displayed in the line graph. However, this data is saved in the data logger.

How to select displayed Measured Values

1. Tap on the button .
➢ The configuration of the line graph will open.

2. Tap on the header of the column Channel.

3. Tick the checkboxes next to those measured values you want to display by tapping on the checkboxes.

!’ You can select a maximum of 20 measuring channels. By default, the first 20 measuring channels are selected.

4. Untick the checkboxes next to those measured values you do not want to display by tapping on the checkboxes.

5. Tap on the button .

6. Tap on the button .

How to display Measured Values on the right Y-Axis

1. Tap on the button .
➢ The configuration of the line graph will open.

- 24 -
2. In the line of the measuring channel whose measured values you want to be displayed in the right y-axis, tap on the cell of the column Axis.

3. Tap on Right axis.
 ➢ The measured values of the measuring channel will be displayed on the right y-axis.

How to choose the Dimensions of the Y-Axis
 ! Measuring channels must be assigned to the right y-axis.
 1. Tap on the button settings.
 ➢ The configuration of the line graph will open.
 ➢ The column Axis will show on which y-axis the dimensions of the measuring channels will be displayed.
 2. In the lower left corner, tap on the field next to Axis 1 Axis 1.
 3. Tap on the dimension that shall be displayed on the left y-axis.
 4. In the lower right corner, tap on the field next to Axis 2 Axis 2.
 5. Tap on the dimension that shall be displayed on the right y-axis.
 6. Tap on the button Save settings.

How to change the Colour of the Measured Value Graphics
 1. Tap on the button settings.
 ➢ The configuration of the line graph will open.
 ➢ In the column Colour tap on the cell of the measuring channel.
 ➢ Tab on the desired colour.
 4. Tap on the button Save settings.

How to change the Time and Date Format
 1. Tap on the button settings.
 ➢ The configuration of the line graph will open.
 ➢ Tap on the end of the line date and time format.
 ➢ Tap on the format in which the time of measurement shall be displayed.
 4. Tap on the button Save settings.
How to scale the Axes

1. Tap on the button on the upper right side.
2. Tap on the button featuring the desired scaling method.
 ➢ The button will light up in red.

Possible Scaling Methods

<table>
<thead>
<tr>
<th>Manual</th>
<th>The axes can be arbitrarily scaled by swipe gestures.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zoom into the time axis</td>
</tr>
<tr>
<td></td>
<td>Zoom out of the time axis</td>
</tr>
<tr>
<td>1)</td>
<td>2)</td>
</tr>
<tr>
<td>1)</td>
<td>Zoom out of the y-axis (axes)</td>
</tr>
<tr>
<td>2)</td>
<td>Zoom into the y-axis (axes)</td>
</tr>
<tr>
<td>1)</td>
<td>2)</td>
</tr>
<tr>
<td>1)</td>
<td>Zoom out of the x- and y-axis (axes)</td>
</tr>
<tr>
<td>2)</td>
<td>Zoom into the x- and y-axis (axes)</td>
</tr>
</tbody>
</table>

Axes are jointly scaled.

How to scale y-axes individually

Tap on the y-axis you want to scale.
The y-axis will be highlighted in bold.
Scale the y-axis.
Tap on the line graph.

Auto | The scaling of the time axis and the y-axis (axes) is fixed.
The most recent measured values will be displayed continuously.
The current setting of the x-axis will be kept.

Gesamte Messung | The entire measurement will be displayed.
X- and y-axes will be scaled automatically.

How to show or hide the Legend

1. Tap on the button on the upper right side.
2. Tap on the checkbox in the section legend next to On/Off.
 ➢ When the checkbox is ticked, the legend is visible.
How to display Saved Measurements

Even during an ongoing measurement operation it is possible to display saved measurement data.

If you open a saved measurement during an ongoing measuring operation, the line graph will show the data of the saved measurement. After closing the display of the saved measurement, the line graph will clear itself and then redraw with the current measurement data of the ongoing measuring operation.

The measurement data of the ongoing measuring operation, which is recorded before and at the time the saved measurement is displayed, will not be displayed in the line graph. However, this data is saved in the data logger.

1. Tap on the button on the upper right side.
2. Tap on the arrow next to Load meas. data.
3. Tap on the measurement you want to load.
4. Tap on the button .
 ➢ The measurement will be displayed on the line graph.

The scaling will automatically be set to Manual.

While a saved measurement is displayed, no new measurement operation can be started and no ongoing measurement operation can be stopped.

How to exit the Display of a Saved Measurement

→ Tap on the button .
 ➢ The current measurement will be displayed again.
 ➢ Measurements can again be stopped and started.

User menu

→ Tap on the tab featuring the icon .

How to set up a User Menu

1. Tap on the button .
2. In the field next to User menu template, enter the name of the user menu.
7 Usage

3. Tap on one of the user menu formats.

4. Tap on Add.

5. Tap on a cell.

6. Tap on the field next to Channel.

7. Tap on the channel number of the measuring channel you want to be displayed in the selected cell.

8. Tap on the field next to Measured value.

9. Tap on the measured value function that you want to display in the selected cell.

10. Tap on Set cell.

→ Repeat the steps 5 to 10 to fill further cells.

How to empty Cells

1. Tap on any cell.

2. Tap on Empty cell.

How to monitor Measured Value Parameters

In response to certain events, all measured values are displayed with additional symbols or highlighted in colour in the channel list, the measured value display, and the user menu.

24.81 °C Measured value

OVERRANGE 43.42 °C Maximum limit value is overshot

UNDERRANGE 2.25 °C Minimum limit value is undershot

10000 g/kg Measuring range overrange (flashing)

0 g/kg Measuring range underrange (flashing)

BREAK ---- ---- Sensor breakage (flashing)

U-LOW ---- ---- Sensor voltage too low (flashing)
7.2.3 How to detect a Sensor Breakage

In case of a sensor breakage, the field of the missing measured value will show the symbol in the measured value display. In addition, an acoustic signal will sound and the ALARM LED of the Status and control lights (measuring circuit board) will light up.

7.2.4 How to set the Data Storage Mode

As soon as a measurement has been started, the arrows of the icon will start flashing in the header of the app.

In case the data storage mode “ring memory” is enabled, the arrows flash in orange.

In case the data storage mode “linear memory” is enabled, the arrows flash in blue.

The first measuring operation will be saved in the data storage mode “ring memory”. When this memory is full, the oldest data will be overwritten.
Any further measuring operations will be saved in the data storage mode “linear memory”. When this memory is full, the measuring operation will stop automatically.

How to change the Data Storage Mode from linear memory to ring memory

You can only change the data storage mode from linear memory to ring memory after all saved measurements have been deleted. Therefore, you should export all measurements, whose data you might need, before changing the data storage mode (see chapter 7.3 How to export Measurements from the Database).

! The current measurement needs to be stopped.

1. In the home screen of the app, tap on the button 📊.
2. Tap on the arrow > next to Manage measurements
3. Tap on the checkbox in the header.
 ➢ The checkboxes in every line will be ticked.
4. Tap on the button Delete measurement.
5. Tap on the button OK.
 ➢ The next measurement will be saved in the data storage mode ring memory.

To be able to save further measurements in the data storage mode ring memory, all saved measurements must be deleted again.

7.2.5 How to manage Measurements

How to label the next Measurement

! The current measurement needs to be stopped.

1. In the home screen of the app, tap on the button 📊.
2. Tap on the arrow > next to Data logger.
3. Tap on the field next to Name of measurement.
4. Enter a name for the measurement.
5. Tap outside of the field.
The next measurements that will be started will receive the listed name complemented with an ascending index.

How to delete Measurements

! The current measurement needs to be stopped.

1. In the home screen of the app, tap on the button
2. Tap on the arrow > in the line Manage measurements.
3. Tap on the checkbox positioned at the end of the line of the measurement that you want to delete.
4. Tap on the button Delete measurement.
5. Tap on the button OK.

➢ The measurement will be deleted from the database of the data logger.

To delete all measurements at once, in step 3 you need to tap on the checkbox in the header. As a result, the checkboxes of all measurements will be ticked.

7.2.6 How to query the Memory Status

→ In the home screen of the app, tap on the button

➢ As soon as a measurement has been started, the arrows of the icon will start flashing.

➔ In case the data storage mode “ring memory” is enabled, the arrows flash in orange.

➔ In case the data storage mode “linear memory” is enabled, the arrows flash in blue.

➔ In the line memory status the memory used will be displayed in percent.

➔ The entire memory and the free memory will be displayed.

➔ The name and the start time of the measurement most recently started will be displayed.

➔ While a measurement is running, the estimated duration is displayed based on the free memory and on the sampling rate.
7.3 How to export Measurements from the Database

Measurements saved to the database can be directly saved on a USB flash drive. Alternatively, the measurements can be saved on a PC via an Internet browser or automatically via the software ALMEMO® Control.

How to save Measurement Data on a USB Flash Drive
1. Plug a USB flash drive into the USB A port.
2. In the home screen of the app, tap on the button.
3. Tap on the tab featuring the icon.
4. Tap on the arrow next to Export measurement.
5. Tap on the measurement you want to export.
6. Tap on the button.
7. Tap on the field below Storage location.
8. Tap on USB flash drive.
9. Tap on.

➤ Measurement data will be saved on the USB flash drive to a .csv file in the folder “Exports”. You can open these files in Microsoft Excel or in AMR WinControl.
➤ The progress of the export in percent will be indicated in red in the footer of the app.

How to save Measurement Data to a PC via an Internet Browser
1. In the home screen of the app, tap on the button.
2. Tap on the tab featuring the icon.
3. Tap on the arrow next to Export measurement.
4. Tap on the measurement you want to export.
5. Tap on the button.
6. Tap on the field below Storage location.
7. Tap on Local export.
8. Tap on Export.
- Measurement data will be saved to a .csv file to the internal memory of the data logger.
- The progress of the export in percent will be indicated in red in the footer of the app.

9. Connect your PC to the data logger (see chapter 7.4.1 How to connect a PC to the Data Logger).

10. Open an Internet browser.

11. On the Status display 3 in the menu “1) Network Conf.”, you will find the IP address.

12. In the input line of the Internet browser, enter the IP address and add /web (e.g. 192.168.11.106/web).

13. Press ENTER.
- The website of the data logger will open.

14. Click on the folder Exports.

- All measurement data that has been saved to the internal memory of the data logger as .csv file will be displayed.

15. Click on the desired .csv file and open or save it.

How to delete Exported Measurements from the Internal Memory of the Data Logger respectively from a USB Flash Drive

! To delete an exported measurement from a USB flash drive, the USB flash drive must be plugged into the USB A port 8.

1. In the home screen of the app, tap on the button 2.

2. Tap on the tab featuring the icon 3.

3. Tap on the arrow > in the line Delete exported measurements.

4. Tap on the measurement you want to delete.

The storage medium to which the measurement has been saved will be displayed in the column Storage location.
5. Tap on the button [Delete export].

➢ The.csv file of the measurement will be deleted from the internal memory of the data logger respectively from the USB flash drive. However, the measurement still remains on the database of the data logger as long as you do not delete the measurement as described in chapter 7.2.5 How to manage Measurements.

7.4 How to connect the Data Logger to other Devices

7.4.1 How to connect a PC to the Data Logger

How to establish a WLAN Connection

1. Select the WLAN network ALMEMO_500_ [six digit identification number]

You will be able to clearly distinguish between the WLAN networks of the measuring devices by means of the six digit identification number. You can also find this number on the nameplate on the bottom of the respective measuring device.

2. Enter the password ahlborn_wlan.

3. Click on Connect.

➢ Via the WLAN connection, you can use the ALMEMO® 500 app, the AMR WinControl program and the ALMEMO® Control program.

How to establish an Ethernet Connection

1. Connect the plug of the Ethernet data cable to the Ethernet socket 6.

2. Connect the other plug of the Ethernet data cable to the Ethernet socket in your PC.

➢ Via the Ethernet connection, you can use the ALMEMO® 500 app, the AMR WinControl program and the ALMEMO® Control program.
How to establish a USB Connection

Via the USB connection the data logger is only accessible via the AMR WinControl program. The app and the ALMEMO® Control program cannot be used via the USB connection.

1. Connect the USB-B plug of the USB data cable to the USB B port 7.
2. Connect the USB A plug of the USB data cable to a USB A port of the PC.

How to read the Number of the COM Ports

3. On your PC keyboard, press the Windows key and the R key simultaneously.

➢ The dialog box Execute will open.
4. Enter devmgmt.msc and press Enter.

➢ The dialog box Device Manager will open.
5. Click on the arrow next to Connections (COM & LPT).
6. Note the COM port number right after ELMO GMAS.

➢ Via the USB connection, you can use the AMR WinControl program.

To be able to install the required driver on your PC (Windows 7 or newer), Windows update must be activated and an Internet connection must be established. See also supplementary Instruction manual “How to Install the USB driver under Windows 7”

How to connect via a Company Network

! The IP address of the access point of the ALMEMO® 500 should be changed to a static IP address, matching the address space of your company (see chapter 8.1.6 How to configure the Access Point).

➢ Ask your IT department to provide you with a static IP address for the access point of the ALMEMO® 500 that is adapted to the address space of your company.

! The DHCP server of the access point of the ALMEMO® 500 must be disabled (see chapter 8.1.6 How to configure the Access Point).

1. Connect your PC to the company network.
2. Switch the data logger off.
7 Usage

3. Connect one of the plugs of the Ethernet data cable to the Ethernet socket 6 and the other one to an Ethernet port of the company network. A switch may be necessary.

4. Switch the data logger on.

5. In the Status display 3 in menu “1) Network Conf.”, note down the IP address that the DHCP server of your company network has assigned to the data logger.

6. Via the company network connection you can use the ALMEMO® 500 app, the AMR WinControl program and the ALMEMO® Control program.

When starting the app or one of the programs, please remember that the IP address of the data logger has changed. The IP address is no longer the IP address of the access point but is now assigned by the company network and can be found in the Status display 3 in menu “1) Network Conf.”

7.4.2 How to use the ALMEMO® 500 App on your PC

! The data logger must be connected to the PC via WLAN, Ethernet, or via the company network.

1. Please install the ALMEMO® 500 app from our website www.ahlborn.com/download/update/ma500

2. To open the app, click on the icon.

3. In the lower area of the screen, click on Network settings.
4. In the Status display 3 in menu “1) Network Conf.”, note down the IP address. Enter the IP address in the field IP address.

5. In the field Port, enter 80.

6. Click on the button Save. Enter the following Login data:

 User name: Almemo500

 Password: Ahlborn2016

8. Click on the button Login.

➢ The home screen of the app will appear.

7.4.3 How to connect an iOS Device to the Data Logger

! The data logger needs to be switched on.

1. Switch on the iOS device and unlock it.

2. Open the app Settings.

3. Enable the WLAN interface.

➢ Available WLAN networks will be searched and displayed.

4. Tap on the WLAN network ALMEMO_500_[six digit identification number].

➢ You will be able to clearly distinguish between the WLAN networks of the measuring devices by means of the six digit identification number. You can also find this number on the nameplate on the bottom of the respective measuring device or on the Status display 3 in menu 2) WLAN-SSID.
5. Enter the password `ahlbarm_wlan`.

- Tap on Connect.

You can download the ALMEMO® 500 app from the app store.

7.4.4 How to use the ALMEMO® 500 App on Android Devices

- The data logger needs to be switched on.
- The ALMEMO® 500 app must be installed on the Android device.

You can download the ALMEMO® 500 app from the Google Play Store.

1. Switch the Android device on.
2. Enable the WLAN interface.
3. Available WLAN networks will be searched and displayed.
4. Tap on the WLAN network ALMEMO_500_[six digit identification number].

You will be able to clearly distinguish between the WLAN networks of the measuring devices by means of the six digit identification number. You can also find this number on the nameplate on the bottom of the respective measuring device or on the Status display 3 in menu 2) WLAN-SSID.

5. Enter the password `ahlbarm_wlan` and connect the Android device to the WLAN network.

6. To open the app, click on the icon 📦.

7.4.5 How to use AMR WinControl

- The data logger must be connected to the PC via Ethernet, USB, WLAN, or the company network.

1. Install the AMR WinControl program.
2. Open the AMR WinControl program.
3. Enter the activation code.
4. Click on Start program.
5. Click on Settings.
6. Click on Add connection.

7. Depending on the type of the connection, click on Network (for WLAN or Ethernet) or COM Port (for USB).

8. In the Status display 3 in menu “1) Network Conf.”, note down the IP address.

9. Enter the IP address in the field next to IP address or Host.

10. Select 10001. as TCP port.

Alternatively
8. For the connection type COM port click on the corresponding COM port designation.

9. For the device number, enter the device address of the data, see chapter 8.1.4 How to change the Device Address.

10. Click on OK.

7.4.6 How to use ALMEMO® Control

! The data logger must be connected to the PC via Ethernet, WLAN, or the company network.

1. Install the ALMEMO® Control program.

2. Open the ALMEMO® Control program.

3. Click on Interface.

4. Clock on the tab ALMEMO 500.

5. In the Status display 3 in menu “1) Network Conf.”, note down the IP address

6. Enter the IP address in the field next to IP address or host.

7. In the field next to Port enter 80.

8. Click on Ok.

9. Click on Search for connected devices.
7.4.7 Further Connection Possibilities

Data logger as access point

WLAN Access-Point

WLAN network

See supplementary Instruction Manual “How to connect the data logger ALMEMO® 500 to a WLAN network as relay-bridge”.
For more detailed information, please consult your technical adviser; see www.ahlborn.com under CONTACT.
7.5 Overview on the Menus of the App

Sensor list

<table>
<thead>
<tr>
<th>Sensor configuration D6/D7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor list</td>
</tr>
<tr>
<td>Calibration data</td>
</tr>
<tr>
<td>Sensor channels</td>
</tr>
<tr>
<td>Channel locking</td>
</tr>
<tr>
<td>Range selection</td>
</tr>
<tr>
<td>Channel designation and function abbreviation</td>
</tr>
<tr>
<td>Measured value smoothing</td>
</tr>
<tr>
<td>Averaging functions</td>
</tr>
<tr>
<td>Measured value output</td>
</tr>
<tr>
<td>Limit values</td>
</tr>
<tr>
<td>Limit value actions</td>
</tr>
<tr>
<td>Analog output</td>
</tr>
<tr>
<td>Scaling values</td>
</tr>
<tr>
<td>Element flags</td>
</tr>
<tr>
<td>Correction values</td>
</tr>
<tr>
<td>Channel compensation</td>
</tr>
<tr>
<td>Cross-section area</td>
</tr>
</tbody>
</table>

Display

<table>
<thead>
<tr>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel list</td>
</tr>
<tr>
<td>Measured value display</td>
</tr>
<tr>
<td>Line graph</td>
</tr>
<tr>
<td>User menu</td>
</tr>
</tbody>
</table>

Memory

<table>
<thead>
<tr>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manage memory and measurement</td>
</tr>
<tr>
<td>Export measurement</td>
</tr>
</tbody>
</table>
Settings

<table>
<thead>
<tr>
<th>Device list</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data logger settings (measuring circuit board=MCB)</td>
<td></td>
</tr>
<tr>
<td>Device settings (MCB)</td>
<td>Macros</td>
</tr>
<tr>
<td>Device compensation</td>
<td></td>
</tr>
<tr>
<td>Operating parameters</td>
<td></td>
</tr>
<tr>
<td>Calibration data</td>
<td></td>
</tr>
<tr>
<td>Power supply (MCB)</td>
<td></td>
</tr>
<tr>
<td>About the device (MCB)</td>
<td></td>
</tr>
<tr>
<td>Sensor overview (MCB)</td>
<td>Calibration data</td>
</tr>
<tr>
<td>Sensor channels</td>
<td></td>
</tr>
<tr>
<td>(as above)</td>
<td></td>
</tr>
<tr>
<td>Sensor configuration D6/D7</td>
<td></td>
</tr>
<tr>
<td>Output modules</td>
<td></td>
</tr>
<tr>
<td>Data logger (memory settings)</td>
<td></td>
</tr>
<tr>
<td>Settings (data logger)</td>
<td></td>
</tr>
<tr>
<td>Current supply</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td></td>
</tr>
<tr>
<td>About the device</td>
<td></td>
</tr>
</tbody>
</table>

- **User**

- **Logout**
8 Settings

8.1 How to set the Data Logger

8.1.1 How to set Time and Date

! The current measurement needs to be stopped.

1. In the home screen of the app, tap on the button

2. Tap on the arrow > next to Settings.

3. Tap on

4. Tap on the current date.

5. Tap on the number of hours, number of minutes, or number of seconds in the field next to

6. Delete the number via the keyboard and enter the current time.

8.1.2 How to set the Storage Cycle Interval of the Data Logger

! The current measurement needs to be stopped.

The storage cycle interval of the data logger can either be set globally for all measurement circuit boards or individually for each measuring circuit board (see chapter 8.2.2 How to set the Storage Cycle Interval of a Measuring Circuit Board). Data can either be stored during the scanning cycle or during the output cycle.

For further information on how to set the measured value output (and the measured value storage) of one single measuring channel, see chapter 8.3.4 How to set Measuring Channel Functions.

The measured values of all sensors are stored according to the storage cycle interval to the database.

Data of V5, V6, and D6 sensors are measured at conversion rate and recorded from the data logger according to the scanning cycle. The conversion rate can be set to 2.5, 10, 50, or 100 measurement operation per second. The scanning cycle can be set from 0.001s to 99,999s.

The measured values of D7 sensors are measured by the sensor with the sensor specific measuring rate and recorded by the measuring device according to the scanning cycle. The shortest
scanning cycle is determined by the fastest measuring rate and the number of the connected D7 sensors.

It is therefore possible to record slow sensors (V5, V6, and D6) in combination with fast D7 sensors in one scanning cycle.

The **scanning time** is the time that is required by the measuring device to carry out one single scan of all measuring channels (V5, V6, and D6). The scanning time results from the number of channels to be measured and the configured conversion rate. In addition, the time for special measurements and (for thermo couples) the time for cold junction measurements needs to be added.

The **output cycle** is an additional (data logger internal) storage cycle interval that enables for example a fast measured value acquisition during a slow storage process of the measured values (e.g. triggering fast limit value actions during slow measured value recording). The output cycle can be set from 1s to 24h.

How to save Data in the Output Cycle

1. In the home screen, tap on the button.
2. Tap on the arrow next to Data logger.
3. Tap on the checkbox next to Update cycle data of the devices.
4. Tick the checkbox next to Save in output cycle.
5. Tap on the field next to Output cycle and enter the desired storage interval of the cycle.
6. Tap outside of the field.
 ➢ The measured data of all measuring circuit boards is saved according to the new output cycle.

How to save Data in the Scan Cycle

1. In the home screen, tap on the button.
2. Tap on the arrow next to Data logger.
3. Tap on the checkbox next to Update cycle data of the devices.
4. Tick the checkbox next to Save in scan cycle.
5. Tap on the field next to Scan cycle and enter the desired storage interval of the cycle.
6. Tap outside of the field.
The measured data of all measuring circuit boards is saved according to the new scan cycle.

8.1.3 How to set Storage Location and Size of the Database

The current measurement needs to be stopped.

1. In case you want to use a USB flash drive as storage location, please plug a USB flash drive in the USB A port.
2. In the home screen of the app, tap on the button.
3. Tap on the arrow next to Data logger.
4. Tap on the field next to Location of measurement memory.
5. Tap on the desired storage location.

The size of the free memory is displayed next to field Free disk space.

6. Tap on the field next to Measurement memory size.
7. Enter the desired storage size that shall be used for the database.
8. Tap outside of the field.
9. Briefly press the ON/OFF key.

The data logger is switched off. The ON LED of the Status and control lights (CPU card) goes out.

10. Briefly press the ON/OFF key.

The data logger is switched on. The ON LED of the Status and control lights (CPU card) is on.

The storage location and the storage size are set.

The USB port can provide a maximum of 500mA (5V). In case you intend to connect an external hard disk, please add an external mains adapter to power the hard disk.

You will find further information regarding the export of measured data in chapter 7.3 How to export Measurements from the Database.

8.1.4 How to change the Device Address

The current measurement needs to be stopped.

1. In the home screen of the app, tap on the button.
2. Tap on the arrow > next to Settings.
3. Tap on the field next to Device address for AMR WinControl.
4. Enter the desired device address.

All measuring devices you want to use in AMR WinControl, must have different device addresses configured.

8.1.5 How to set Start and Stop Mode

- **The current measurement needs to be stopped.**
- 1. In the home screen of the app, tap on the button ✗.
- 2. Tap on the arrow > next to Device list.
- 3. Tap on the arrow > next to a measuring circuit board.
- 4. Tap on the arrow > next to Data logger settings.
- 5. Tap on the field next to Start mode and select the desired start mode.

Manual, limit value, trigger	The measurement will start as soon as you tap on the Start button. Alternatively, the measurement can also be started by a limit value action or by a trigger signal.
Start time	Every day, the measurement starts at the set time.
Start time/ date	The measurement starts at the indicated date at the set time.

6. In the field next to Start time you can enter a start time if desired.
7. In the field next to Start date you can enter a start date if desired.
8. Tap outside of the field.
9. Tap on the field next to Stop mode and select the desired stop mode.

| Manual, limit value, trigger | The measurement will stop as soon as you tap on the Stop button. Alternatively, the measurement can also be stopped by a limit value action or a trigger signal. |
10. In the field next to Stop time, you can enter a stop time if desired.

11. In the field next to Stop date, you can enter a stop date if desired.

12. In the field next to Fixed Measuring period, you can enter a measuring period if desired.

13. Tap outside of the field.

➢ The measurement will now start and/or stop according to the set start/stop mode.

In case you have set different start/stop modes for different measuring circuit boards, the measurement will be started as soon as the first start time is reached. The measurement will be stopped as soon as the first stop time is reached.

8.1.6 How to configure the Access Point

How to deactivate the DHCP Server in the ALMEMO® 500 App

! The data logger must either be connected to the tablet via WLAN or to the PC via Ethernet or WLAN.

1. In the home screen of the app, tap on the button.

2. Tap on the arrow next to Settings.

3. Untick the checkbox next to Obtain IP address automatically.

➢ The DHCP server of the access point of the ALMEMO® 500 will no longer assign IP addresses. This is necessary in case a further DHCP server is available in the network.

If no further DHCP server is available in the network, in the app you should manually set the IP address of the CPU card to a static IP address using the app.

→ In the field next to IP address, enter the static IP address.
How to open the Configuration Site

You can either configure the access point via tablet or via the PC.

! The data logger must either be connected to the tablet via WLAN or to the PC via Ethernet or WLAN.

1. Open an Internet browser.
2. Enter the IP address of the access point of the ALMEMO® 500 (set by the factory to 192.168.1.1) into the address line of the Internet browser.
3. Tap on ENTER.

➢ The Login screen of the access point will open.
4. Enter the username (factory-set to root) in the field next to Username.
5. Enter the password (factory-set to Ahlborn2016) in the field next to Password.
6. Click on the button.

➢ The configuration site of the access point will open.

How to change the IP Address of the Access Point

→ Follow the steps 1 to 6 in the section How to open the configuration site.
7. Click on Network.
8. Click on Interfaces.
9. Click on next to LAN.
10. In the tab General Setup enter the desired IP address in the filed next to IPv4 address.
11. Click on Save & Apply.

➢ The IP address has been changed. To access the configuration site of the access point again, you must enter the new IP address in the address line of the Internet browser.

How to deactivate the DHCP Server

→ Follow the steps 1 to 6 in the section How to open the configuration site.
8 Settings

7. Click on **Network**.
8. Click on **Interfaces**.
9. Click on **Edit** next to LAN.
10. Scroll to the section DHCP server.
11. In the tab **General Setup** tick the checkbox next to Disable DHCP for this interface.
12. Click on **Save & Apply**.

➢ The DHCP server of the access point of the ALMEMO® 500 will no longer assign IP addresses. This is necessary in case a further DHCP server is available in the network.

➢ You can also deactivate the DHCP server in the ALMEMO® 500 app.

➢ If no further DHCP server is available in the network, in the app you should manually set the IP address of the CPU card to a static IP address (see sections How to deactivate the DHCP Server in the ALMEMO® 500 App).

How to change the WLAN SSID

→ Follow the steps 1 to 6 in the section How to open the configuration site.

7. Scroll down to the section **Wireless**.
8. Click on the WLAN SSID written in blue ALMEMO_500_[six digit identification number].
9. Scroll down to the section **Interface Configuration**.
10. In the tab **General Setup** enter the WLAN-SSID you want to assign to the access point in the field next to **ESSID**.
11. Click on **Save & Apply**.

➢ The WLAN SSID has been changed.
➢ All WLAN connections to this access point will be disconnected.

How to change the Network Key

→ Follow the steps 1 to 6 in the section How to open the configuration site.

7. Scroll down to the section **Wireless**.
8. Click on the WLAN SSID written in blue ALMEMO_500_[six digit identification number].

9. Scroll down to the section Interface Configuration.

11. In the field next to Key enter the new network key.

12. Click on ➢ Save & Apply ➢.

➢ The network key has been changed.
➢ All WLAN connections to this access point will be disconnected.

How to change the Password of the Configuration Site for the Access Point

→ Follow the steps 1 to 6 in the section How to open the configuration site.

7. Click on System.

8. Click on Administration.

9. In the section Router Password enter the desired password in the field next to Password.

10. In the field next to Confirmation enter the same password.

11. Scroll down and click on ➢ Save & Apply ➢.

➢ The password has been changed.

How to reset the Access Point to its Factory Setting

! The data logger must not be connected to a PC or a network via an Ethernet data cable.

1. Continue pressing the right one of the Navigation keys 4 until the Status display 3 displays the menu “1) Network Conf.”.

2. Press and hold the right one of the Navigation keys 4.

➢ The Status display 3 shows the menu “WLAN Module”.

3. Press the left one of the Navigation keys 4 to confirm with YES.

➢ The access point will be reset.

➢ The resetting process may take several minutes. Please be patient.

➢ The Status display 3 displays “Press any key”.
4. Switch the data logger off and then on again to reboot the system.

8.1.7 How to assign a static IP Address to a CPU Card

! The data logger must either be connected to the tablet via WLAN or to the PC via Ethernet or WLAN.

1. In the home screen of the app tap on the button 📧.
2. Tap on the arrow ➔ next to Settings.
3. Tick the checkbox next to Obtain IP address automatically.
 ➢ The DHCP server of the access point of the ALMEMO® 500 will no longer assign IP addresses. This is an advantage in case a further DHCP server is available in the network.
 → In the field next to IP address enter the static IP address.

8.1.8 How to query Information on the Data Logger

1. In the home screen, tap on the button 📧.
2. Tap on the arrow ➔ next to About the device.
 ➢ The serial number, the software version of the CPU card, the link to the PDF file of the Instruction Manual as well as the website of the Ahlborn company will be displayed.

 How to query recent messages
 1. In the home screen, tap on the button 📧.
 2. Tap on the arrow ➔ next to About the device.
 3. Tap on the arrow ➔ next to Messages.
 ➢ The most recent messages of the data logger will be displayed.

 How to query Operating Parameters
 → Continue pressing the right one of the Navigation keys 4 until the Status display 3 shows the menu “5) Supply”.
 5) Supply:
 U In: 12V
 U CPU: 3.3V
 U WLAN: 3.3V
 U USB: 5.0V

Alternatively
1. In the home screen, tap on the button 📧.
2. Tap on the arrow > next to Power supply.

The operating parameters that can be queried are: supply voltage, CPU voltage, WLAN voltage, USB voltage, remaining time of the battery, battery status, voltage and power of the battery and the mains unit. To enable the display of the operating parameters of the rechargeable batteries, you need to tick the checkbox next to Update data of battery units.

8.2 How to set the Measuring Circuit Board

8.2.1 How to change the Measuring Circuit Board Address

The data logger needs to be switched off.

→ Use a screwdriver to turn the Coding switch 1 until the arrow of the coding switch points to the desired number.

The measuring circuit board addresses of the individual measuring circuit boards must be encoded in ascending order starting from G00, whereby the left coding switch represents the first digit and the right coding switch represents the second digit.

Several measuring circuit boards must not have the same measuring circuit board address. The addresses from G90 upwards are reserved i.a. for battery packs and must not be used for measuring circuit boards.

8.2.2 How to set the Storage Cycle Interval of a Measuring Circuit Board

The current measurement needs to be stopped.

The storage cycle interval of the data logger can either be set globally for all measurement circuit boards or individually for each measuring circuit board (see chapter 8.1.2 How to set the Storage
Cycle Interval of the Data Logger). Data can either be stored during the scanning cycle or during the output cycle.

For further information on how to set the measured value output (and the measured value storage) of one single measuring channel see chapter 8.3.4 How to set Measuring Channel Functions.

The measured values of all sensors are stored according to the storage cycle interval to the database.

Data of V5, V6, and D6 sensors are measured at conversion rate and recorded from the data logger according to the scanning cycle. The conversion rate can be set to 2.5, 10, 50, or 100 measurement operation per second. The scanning cycle can be set from 0.001s to 99,999s.

The measured values of D7 sensors are measured by the sensor with the sensor specific measuring rate and recorded by the measuring device according to the scanning cycle. The shortest scanning cycle is determined by the fastest measuring rate and the number of the connected D7 sensors.

It is therefore possible to record slow sensors (V5, V6, and D6) in combination with fast D7 sensors in one scanning cycle.

The scanning time is the time that is required by the measuring device to carry out one single scan of all measuring channels (V5, V6, and D6). The scanning time results from the number of channels to be measured and the configured conversion rate. In addition, the time for special measurements and (for thermo couples) the time for cold junction measurements needs to be added.

The output cycle is an additional (data logger internal) storage cycle interval that enables for example a fast measured value acquisition during a slow storage process of the measured values (e.g. triggering fast limit value actions during slow measured value recording). The output cycle can be set from 1s to 24h.

How to save Data in the Output Cycle

1. In the home screen, tap on the button 📊.
2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, the storage cycle of which you want to adjust.
4. Tap on the arrow > next to Data logger settings.
5. Tick the checkbox next to Save in output cycle.
6. Tap on the field next to Output cycle and enter the desired storage interval of the cycle.
7. Tap outside of the field.
 ➢ The measured data of this measuring circuit board is saved according to the new output cycle.

How to save Data in the Scan Cycle
1. In the home screen, tap on the button \(\mathbf{\times}\).
2. Tap on the arrow \(\Rightarrow\) next to Device list.
3. Tap on the arrow \(\Rightarrow\) next to the measuring circuit board the storage cycle of which you want to adjust..
4. Tap on the arrow \(\Rightarrow\) next to Data logger settings.
5. Tick the checkbox next to Save in scan cycle.
6. Tap on the field next to Scan cycle and enter the desired time for the scan cycle.
7. Tap outside of the field.
 ➢ The measured data of this measuring circuit board is saved according to the new scan cycle.

8.2.3 How to query the Storage Cycles of all Measuring Circuit Boards
1. In the home screen, tap on the button \(\mathbf{\times}\).
2. Tap on the arrow \(\Rightarrow\) next to Data logger.
3. Tick the checkbox next to Update cycle data of the devices.
 ➢ The cycles for the storage of the measuring circuit boards are being updated and displayed.

8.2.4 How to set the Conversion Rate of the Measuring Circuit Board

! The current measurement needs to be stopped.
1. In the home screen, tap on the button \(\mathbf{\times}\).
8 Settings

2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, whose conversion rate you want to adjust.
4. Tap on the arrow > next to Data logger settings.
5. Tap on the field next to Conversion rate.
6. Tap on the desired conversion rate.

A low conversion rate increases the measuring accuracy.

8.2.5 How to set Macros

Macros are a number of serial commands that can be executed on the basis of trigger events or in case of limit value actions. For further information on the single commands, see ALMEMO® Manual, 9th edition, 2011, chapter 6 Operation via the serial interface.

You can set up to 5 macros for one measuring circuit board.

1. The current measurement needs to be stopped.
2. In the home screen, tap on the button
3. Tap on the arrow > next to Device list.
4. Tap on the arrow > next to the measuring circuit board, whose macros you want to adjust.
5. Tap on the arrow > next to Device settings.
6. Tap on the arrow > next to Macros.
7. Tap on the field next to the name of the macro you want to adjust.
8. Enter the individual serial commands. Separate each command with the character | (AltGr + <).
9. Tap outside of the field.

The macro is set and can be used in case of limit value actions (see chapter 8.3.4 How to set Measuring Channel Functions).
8.2.6 How to set Operating Parameters

! The current measurement needs to be stopped.

1. In the home screen, tap on the button.
2. Tap on the arrow next to Device list.
3. Tap on the arrow next to the measuring circuit board whose operating parameter you want to adjust.
4. Tap on the arrow next to Device settings.
5. Tap on the arrow next to Operating parameter.

How to change Mains Hum Suppression to 60 Hz

As default, the mains hum suppression is set to 50 Hz.

→ Follow the steps 1 to 5.
→ Tick the checkbox next to 60-Hz hum suppression.
➢ The mains hum suppression is reduced to 60 Hz.

To reset the mains hum suppression to 50 Hz, untick the checkbox next to 60-Hz hum suppression.

How to delete all Maximum, Minimum and Average Values at each Start

→ Follow the steps 1 to 5.
→ Tick the checkbox next to At start delete maximum / minimum / average values.

How to set the Hysteresis

→ Follow the steps 1 to 5.
6. Tap in the field next to Hysteresis.
7. Enter the desired hysteresis.
8. Tap outside of the field.

➢ The hysteresis can be adjusted from 0 to 99 digits. By default, the hysteresis is set to 10 digits.
How to set the Sensor Voltage

The setpoint sensor voltage is automatically derived from the minimal sensor voltage of the sensors and can be changed to a higher value if required.

→ Follow the steps 1 to 5.

6. Tap in the field next to Sensor voltage, setpoint.
7. Tap on the desired sensor voltage.
➢ The sensor voltage will be set to the new setpoint sensor voltage.

8.2.7 How to set the device compensation values

! The current measurement needs to be stopped.

1. In the home screen tap on the button ☒.
2. Tap on the arrow ➔ next to Device list.
3. Tap on the arrow ➔ next to the measuring circuit board, whose device compensation values you want to adjust.
4. Tap on the arrow ➔ next to Device settings.
5. Tap on the arrow ➔ next to Device compensation values.
6. Tap in the field next to Atmospheric pressure.
7. Enter the atmospheric pressure that you want to specify for the atmospheric pressure compensation.
8. Tap in the field next to Temperature compensation.
9. Enter the temperature that you want to specify for the temperature compensation
10. Tap outside of the field.

If you delete the temperature of the temperature compensation, the temperature will automatically be set to 25.0°C.

Next to cold junction compensation temperature, the cold junction temperature will be displayed. This temperature is measured by two precision NTC sensors in the ALMEMO® input sockets M0 and M9, is linearly interpolated, and is used for all thermo couple elements as cold junction temperature.
8.2.8 Information on how to query the Measuring Circuit Board

How to query Device Type, Software Version, Device Option and Serial Number

1. In the home screen, tap on the button 🗂.
2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, about which you want to query information.
4. Tap on the arrow > next to About the device.

Power supply

1. In the home screen, tap on the button 🗂.
2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, about which you want to query information.
4. Tap on the arrow > next to Power supply.

Calibration Data

1. In the home screen, tap on the button 🗂.
2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, about which you want to query information.
4. Tap on the arrow > next to Device settings.
5. Tap on the arrow > next to Calibration data.

➢ The serial number and the end date of the calibration interval will be displayed.

⚠️ If you tick the checkbox next to Calibration message, the app will display a report after the expiry of each calibration interval of the data logger and of the connected sensors.
8.3 How to set a Sensors

8.3.1 How to display the Sensor

1. In the home screen, tap on the button 📊.
 - All sensors that are connected to one measuring circuit board will be displayed together with the measuring point number (Mx) (measuring circuit board address and number of the ALMEMO® input socket), the sensor type (type), possibly a description, the software version, and the serial number.
 - On the top left above the table a field indicates to which measuring circuit boards the displayed sensors are connected.
2. Tap on the field above the table.
3. Tap on the name of the measuring circuit boards whose sensors you want to display.

Alternatively
1. In the home screen tap on the button 📊.
2. Tap on the arrow > next to Device list.
3. Tap on the arrow > next to the measuring circuit board, whose sensors you want to display.
4. Tap on the arrow > next to Sensor overview 📊.
 - All sensors connected to this measuring circuit board will be displayed.

8.3.2 How to query the Calibration Data and set the calibration interval

How to query the Calibration Date
1. Display the sensors of one measuring circuit board.
2. Tap on the arrow > next to the sensor, whose calibration data you want to query.
3. Tap on the arrow > next to Calibration data.
 - The end date of the calibration interval will be displayed.
How to set the Calibration Interval

! The current measurement needs to be stopped.

1. Display the sensors of one measuring circuit board.
2. Tap on the arrow > next to the sensor, whose calibration interval you want to adjust.
3. Tap on the arrow > next to Calibration data.
4. Tap on the field next to Calibration interval.
5. Enter the requested calibration interval in months.
6. Tap outside of the field.

➢ The new calibration interval has been set.

If you tick the checkbox next to Calibration message, the app will display a report after the expiry of each calibration interval of the data logger and of the connected sensors.

8.3.3 How to set the Sensor Configuration

You can adjust the sensor configuration of D6 and D7 sensors. The sensor configuration of V5 and V6 sensors can be adjusted via the measuring channel function or in the ALMEMO® Control software.

! The current measurement needs to be stopped.

1. Display the sensors of one measuring circuit board.
2. Tap on the arrow > next to the sensor, whose sensor configuration you want to adjust.
3. Tap on the arrow > next to Sensor configuration (D6, D7).

➢ The set sensor configuration will be displayed.
4. Tap on the field next to the channel number of the measuring channel, whose range you want to adjust.
5. Tap on the requested range.

➢ You can adjust further sensor specific parameters by clicking on the field next to the parameter name and entering the requested size.
8.3.4 How to set Measuring Channel Functions

! The current measurement needs to be stopped.
1. Display the sensors of one measuring circuit board.
2. Tap on the arrow > next to the sensor, in which you want to adjust a measuring channel function.
3. Tap on the arrow > next to Sensor channels.
4. Tap on the arrow > next to the measuring channel, whose measuring channel function you want to adjust.

How to lock a measuring channel

Depending on the locking level, the channel locking protects the measuring channel against the change of the measuring channel functions.

Before adjusting the measuring channel function, the locking level must be reduced to such a level, that the activated channel locking is disabled.

A higher locking level implies the channel locking of lower locking levels.

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.
5. Tap on the arrow > next to Channel locking.
6. Tick the checkbox of the highest locking level you want to set.
7. To disable a locking, tap on the checkbox next to the locking level you want to disable. Higher activated locking levels will also be disabled.

How to set Measuring Range, Multiplexer, Reference Channel, and Dimension

While setting the new measuring range, the standard dimension and multiplexer for this range will be automatically set. All settings of the measuring channel functions of the measuring channel will be deleted.

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.
5. Tap on the arrow > next to Range selection.
6. Untick the checkbox next to Locking level 1.

7. Tap on the field next to Range.
 ➢ All possible measuring ranges will be displayed.

8. Tap on the desired measuring range.

9. Tap on the field next to Multiplexer.
 ➢ All settings possible for the multiplexer will be displayed.

10. Tap on the desired multiplexer setting.

11. Tap on the field next to Reference channel 1, in case you need a reference measuring point based on which a derived measured value shall be calculated.

12. Tap on the desired reference channel.

 It is only possible to select measuring channels that are on the same measuring circuit board. Only the measuring channel of the measuring circuit board that is queried for the calculation of the derived measured value is indicated. The sensor with the desired measuring channel must be connected to the right ALMEMO® input socket.

13. If you need two reference measuring points for the calculation of a derived measured value, tap on the field next to Reference channel 2.

14. Tap on the desired reference channel.

15. If you want to change the dimension of the measuring channel, untick the checkbox next to Locking level 3.

16. Tap in the field next to Units.

17. Enter the desired dimension.

18. Tap outside of the field.

 If you set a range of calculation as measuring range in the measuring channel, the measuring channel becomes an arithmetic channel. For further information on the individual ranges, see ALMEMO® Manual, 9th edition, 2011, chapter 6.3.3 Selecting the measuring range.
How to assign Channel Designation and establish a Function Channel

The channel designation will be displayed in all measured value displays. The channel designation helps to individually label the sensor type, the measuring location or the operational purpose.

You can provide every measuring channel with a 10 digit (20 digits for D7 sensor) designation existing of ASCII characters (except for; / | #).

A „!“ at the end of a designation indicates than a customer-specific linearization table respectively a multi-point calibration is active within the plug.

The following table lists all possible function abbreviations that can stand at the beginning of a channel designation and that imply certain special functions.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*J</td>
<td>Defines a temperature sensor (NTC, Pt100) for external cold junction compensation (see ALMEMO® Manual, 9th edition, 2011, chapter 6.7.3 Measure cold junction temperature with external sensor).</td>
</tr>
<tr>
<td>#J</td>
<td>Implies for a thermocouple to use an internal cold junction sensor (see ALMEMO® Manual, 9th edition, 2011, chapter 6.7.3).</td>
</tr>
<tr>
<td>*T</td>
<td>Defines a temperature sensor (NTC, Pt100) as a reference for temperature compensation.</td>
</tr>
<tr>
<td>*P</td>
<td>Defines an atmospheric pressure sensor as a reference for atmospheric pressure compensation.</td>
</tr>
<tr>
<td>#N</td>
<td>Has the following effect for flow measurements: conversion of measurement conditions of temperature compensation and atmospheric pressure compensation to standard conditions</td>
</tr>
<tr>
<td>*R</td>
<td>The measured value is provided as an operand for the sensors of this and all other measurement circuit boards. To be able to use this measured value on another measured circuit board, the desired measuring circuit board must have an activated measuring channel featuring the measuring range MesR.</td>
</tr>
</tbody>
</table>
See Supplementary Instruction Manual: How to activate a function channel MesR (ALMEMO® 500).

! The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow > next to Channel designation, function abbreviation.

6. Tap on the field next to Channel designation.

7. Enter the desired channel designation.

8. If you want to use the measuring channel as function channel, tap on the button next to the desired function.

➢ The function channel is established and the function abbreviation will automatically be put in front of the channel designation.

How to set the Measured Value Smoothing

The measured value smoothing serves to smooth respectively steady measured values by a sliding averaging over a set period of time for fluctuating measured values (e.g. for flow measurements with turbulence).

The measured value smoothing has the following effect:

\[M = \frac{\sum_{i} m_i}{N} \]

The smoothed measured value also applies to all following evaluation functions. The measured value smoothing can therefore also be used in combination with the averaging function.

The measured value smoothing will be adjusted in the range of 0 to 99 according to the number of the values averaged at a time.

! The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow > next to Measured val. smoothing.

6. Tap on the field next to Measured val. smoothing.

7. Enter the number of the values averaged at a time.
The resulting time slot (s) = measured value smoothing / conversion rate * (V5 channels +1) will be displayed.

How to set the Averaging Function

1. The current measurement needs to be stopped.
2. Follow the steps 1 to 4.
3. Tap on the arrow > next to Averaging functions.
4. Tap on the field next to Averaging mode.
5. Tap on the desired averaging mode.

<table>
<thead>
<tr>
<th>CONT</th>
<th>Averaging of all measured values of the measuring channel from start to stop of the measurement.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYCL</td>
<td>Averaging of all measured values in one scan cycle.</td>
</tr>
</tbody>
</table>

After the measurement has been started, the measured values will be averaged and the average value as well as the number of the averaged values will be displayed in the averaging functions. They can also be shown in the measured value display.

To record averaged values either the output function must be enabled (see section How to set the Measured Value Output) or a function channel featuring the range M(t) must be established (see section How to assign a Channel Designation and establish a Function Channel.

You can delete the average value separately or together with all maximum and minimum values by ticking the checkbox of the delete function you prefer.

How to set the Measured Value Output

If a measured value output that reads out a function value (e.g. maximum value) instead of a measured value has been set, only the appropriate function value will processed when saving to memory, analog output, and digital output.
The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow > next to Measured value output.

6. Untick the checkbox next to Locking level 4.

7. Tap on the field next to Output function.

8. Tap on the desired output function.

The cycle factor determines the number of times that the function value will be read out. The function value will be read out once per x cycles, as the cycle factor defines.

The cycle factor can be set from 0 to 99 cycles. If the cycle factor is set to 0, the cycle factor will not be read out.

9. Tap on the field next to Cycle factor.

10. Enter the desired cycle factor in units of cycles.

11. Tap outside of the field.

How to set Limit Values

For every measuring channel you can set a maximum limit value and a minimum limit value.

In case the maximum limit value is overshot, an acoustic signal sounds, the ALARM LED of the Status and control lights13 (measuring circuit board) lights up, and the maximum value of the measuring channel of the measured value display will be displayed in red.

In case the minimum limit value is undershot, an acoustic signal sounds, the ALARM LED of the Status and control lights13 (measuring circuit board) lights up, and the minimum value of the measuring channel of the measured value display will be displayed in blue.

Since the minimum and maximum values remain colored, you can still see at the end of the measurement if the limit values have been over- or undershot.

The alarm state (the sound of the acoustic signal and the light of the ALARM LED) persists until the measured value over- respectively undershoots the limit value again by the hysteresis.
The hysteresis setting can be modified in the range of 0 to 99 digits. The hysteresis is preset to 10 digits.

If no limit value has been set, the measuring range limit is considered as limit value. Limit value overshoot will be indicated by the writing `OVERRANGE`. Limit value undershoot will be indicated by the writing `UNDERRANGE`.

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.

5. Tap on the arrow > next to Limit values.

6. Untick the checkbox next to Locking level 7.

➢ The current maximum and minimum values will be displayed.

7. Tap on the field next to Limit value, maximum.

8. Enter the desired maximum limit value.

9. Tap on the field next to Limit value, minimum.

10. Enter the desired minimum limit value.

11. Tap on the field next to Hysteresis. Enter the desired hysteresis in digits.

How to set Limit Value Actions

In addition to the alarm state described in the previous section, limit value actions can be set.

The limit value action is only active until the measured value has returned to within the limit value by the hysteresis.

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.

5. Tap on the arrow > next to limit value actions.

6. Untick the checkbox next to Locking level 6.

7. Tap on the field next to Action- maximum.

8. Tap on the desired limit value action.

<p>| Alarm only | No limit value action has been set. |</p>
<table>
<thead>
<tr>
<th>Start measuring</th>
<th>Measurement starts as soon as the limit value has been under- or overshot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop measuring</td>
<td>Measurement stops as soon as the limit value has been under- or overshot.</td>
</tr>
<tr>
<td>Single measurement “Manually”</td>
<td>If the limit value is over- or undershot, a single scan of all measuring channels will be performed.</td>
</tr>
<tr>
<td>Set timer to zero</td>
<td>The value of the channel, in which the measuring range “Time” is set, will be set to zero in case the limit value is over or undershot.</td>
</tr>
<tr>
<td>Macro 5 to 9</td>
<td>The selected macro will be started in case the limit value is over- or undershot.</td>
</tr>
</tbody>
</table>

9. Tap on the field next to Action: minimum.

10. Tap on the desired limit value action.

How to set Scaling Values

The scaling of a measured value has the following effect:

Displayed measured value = (corrected measured value – base value) x Factor

The factor is adjustable in the range of -1.9999 to +1.9999.

Using the exponents, the comma can either be shifted to the left (using a negative number) or to the right (using a positive number).

! The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow > next to Scaling values.

6. Untick the checkbox next to Locking level 5.

7. Tap on the field next to Base value.

8. Enter the base value.

9. Tap on the field next to Factor.

10. Enter the factor.
11. Tap on the field next to Exponential.
12. Enter the exponents.

If scaling values are set in a measuring channel, the measured value will be displayed in the measured value display featuring the adjustment arrow 🔄.

How to set the Correction Values Zero-Point and Gain

The correction of a measured value has the following effect:
Corrected measured value = (measured value – zero point) x gain

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.
5. Tap on the arrow > next to Correction values.
6. Untick the checkboxes next to Locking level 2 and Locking level 4.
7. Tap on the field next to Zero point.
8. Enter the desired zero point.
9. Tap on the field next to Gain.
10. Enter the desired gain value.

If correction values are set in a measuring channel, the measured value will be displayed in the measured value display featuring the adjustment arrow 🔄.

Calibration offset and calibration factor are correction values, which – for some sensors – are set by the factory. These values will be displayed, they can, however, not be changed.

How to enable Element Flags for sensor specific additional Functions

Element flags can be activated for some measuring ranges.
For more information on the individual element flags, see ALMEMO® Manual, 9th edition, 2011, chapter 6.10.3 Element flags.

! The current measurement needs to be stopped.
→ Follow the steps 1 to 4.
5. Tap on the arrow > next to Element flags.
6. Untick the checkbox next to Locking level 1.
7. Tap on the checkbox next to the element flag you want to enable.

How to set Compensation Values

! The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow ➔ next to Channel compensation.

➢ All compensation values that are used in this measuring channel for compensation will be displayed.

The compensation values used are retrieved from the measuring channels with the corresponding function abbreviations in the channel designation (see chapter 8.3.4 How to set Measuring Channel Functions, section How to assign a Channel Designation and establish a Function Channel).

In case several identical function abbreviations are used within one measuring device, the function value with the corresponding function abbreviation of the next smaller channel number will always be used as compensation value for a measuring channel.

➢ As long as no function abbreviations have been assigned to the channels, internal measured and programmed values are used for the compensation in this measuring channel.

➢ By tapping on the arrow ➔ next to Device compensation values, the menu device compensation will open and show the currently used compensation values (see chapter 8.2.7 How to set the device compensation).

How to enter a Cross-Section Area

➢ During a volume flow measurement in a flow channel, the cross-section area is multiplied by the medium flow velocity. For further information on volume flow measurement see ALMEMO® Manual, 9th edition, 2011, chapter 3.5.5 Volume Flow Measurement.

! The current measurement needs to be stopped.

→ Follow the steps 1 to 4.

5. Tap on the arrow ➔ next to Cross-section area.

6. Tap on the field next to Cross-section area.

7. Enter the cross-section area of the flow channel in cm².
8. Tap outside of the field.

8.3.5 How to enable a new Measurement Channel

! The current measurement needs to be stopped.
1. Display the sensors of the measuring circuit board.
2. Tap on the arrow ➔ next to the sensor, in which you want to enable a new measurement channel.
3. Tap on the arrow ➔ next to Sensor channels.
4. Tap on the checkbox next to the measuring channel you want to enable.
➢ The measurement channel has been enabled.

Enabling a measuring channel may take several seconds.

5. Tap on the arrow ➔ next to the measuring channel you have just enabled.
6. Tap on the arrow ➔ next to Range selection.
7. Untick the checkbox next to Locking level 1.
8. Tap on the field next to Range.
9. Tap on the desired measuring range.

8.3.6 How to disable a Measuring Channel

➢ If a measuring channel is disabled, it will not appear in the measured value display and its measured data will not be saved.

! The current measurement needs to be stopped.
1. Display the sensors of the measuring circuit board.
2. Tap on the arrow ➔ next to the sensor, of which you want to disable a measuring.
3. Tap on the arrow ➔ next to Sensor channels.
4. Tap on the checkbox next to the measuring channel you want to disable.
➢ The measuring channel has been disabled. By tapping on the checkbox once again you can re-enable the measuring channel. All measuring channel functions that were set before disabling the channel will be restored.
Enabling /disabling a measuring channel may take several seconds.

8.4 How to set a Measured Value Function

1. In the home screen of the app tap on the button 📈.
2. Tap on the tab featuring the icon 📊.
3. Tap on the channel number at the top left of the screen.
4. Tap on the channel number of the measuring channel, whose maximum, minimum and average values you want to delete.

8.4.1 How to delete Maximum, Minimum or Average Values

→ Follow the steps 1 to 4.
5. Tap on the measured value.
6. Tap on the field next to the channel number.
7. Tap on the measured value function you want to use

<table>
<thead>
<tr>
<th>Delete maximum value</th>
<th>Deletes the maximum value measured so far.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete minimum value</td>
<td>Deletes the minimum value measured so far.</td>
</tr>
<tr>
<td>Delete average value</td>
<td>Deletes the average value measured so far.</td>
</tr>
<tr>
<td>Delete all maximum, minimum, and average values</td>
<td>Deletes the maximum, minimum, and average value measured so far.</td>
</tr>
</tbody>
</table>

8.4.2 How to zero-set or adjust the Measured Value

→ Follow the steps 1 to 4.
5. Tap on the measured value.
6. Tap on the field next to the channel number.
7. Tap on the measured value function you want to use.

| Zero-setting | Transforms the measured value into a base value and from then on subtracts the base value from the measured value.
| | To display the actual measured value again, the base value must be deleted. (see chapter 8.3.4 How to set Measuring Channel Functions, How to set Scaling Values) |
| Temporary zero-setting | The function is the same as the one of “Zero setting”.
| | The base value will be deleted as soon as the sensor is disconnected or the device is switched off. |
| Adjustment | The measured value is saved as zero-point correction and will be subtracted from the measured value from then on.
| | 🔄 If a base value has been set instead of zero, the measured value will display the negative base value after the adjustment. |
| Setpoint adjustment | The measured value will be corrected to a defined setpoint, which has been entered previously.
| | ! The sensor must be set to the setpoint in advance (e.g. boiling water) |

8.5 How to configure the ALMEMO® 500 App

8.5.1 How to manage User Rights

How to add new User Rights

! You must be logged in to the app as administrator.
1. In the home screen of the app, tap on the button User.
2. At the top right of the screen tap on Add.
3. Enter a username.
4. Choose a user role.
Administrators have all operating options in the app. Viewers can view measurements and all configurations but are not allowed to make any changes.

5. If desired, enter a comment
6. Enter a password.
7. Tap on Add.

How to delete a User

You must be logged in on the app as administrator.

1. In the home screen of the app, tap on the button User.
2. Tap on the waste bin next to the user you want to delete.
3. Tap on Delete.

It is not possible to delete the user, who is currently logged in.

An administrator is allowed to delete other administrators.

How to view User Data

1. In the home screen of the app, tap on the button User.
2. Tap the line of the user, whose data you want to view.

It is not possible to change the user profile. Only the comment can be changed.

8.5.2 How to query the WLAN SSID of the connected Data Logger

1. In the home screen, tap on the button.
2. In the header of the app, tap on the icon.

The WLAN SSID will be displayed.

8.5.3 How to log out as a User

In the home screen, tap on the button to log out of the app.
9 Access Data

<table>
<thead>
<tr>
<th></th>
<th>Factory default login data</th>
<th>Changing procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLAN</td>
<td>SSID: ALMEMO_500_[six digit number](six digit identification number, can also be found on the nameplate)</td>
<td>See chapter 8.1.6</td>
</tr>
<tr>
<td></td>
<td>Network key: ahlborn_wlan</td>
<td></td>
</tr>
<tr>
<td>ALMEMO® 500 app</td>
<td>User name: Almemo500
 Password: Ahlborn2016</td>
<td>See chapter 6 Fehler! Verweisquelle konnte nicht gefunden werden.</td>
</tr>
<tr>
<td>Configuration site of the access point</td>
<td>IP address data logger: 192.168.1.1
User name: root
Password: Ahlborn2016</td>
<td>See chapter 8.1.6</td>
</tr>
</tbody>
</table>
10 Operation with a Battery Pack (optional)

10.1 Before the First Use of the Battery Pack

For safety reasons, the battery sockets will be unplugged prior to shipment in order to properly interrupt the power supply of the battery pack provided by the battery.

- In case the battery pack was delivered together with the data logger, please remove the battery pack from the housing of the data logger; see also chapter 10.2 How to remove the Battery Pack from the Housing of the Data Logger.

1. Pin the Battery sockets 28 to the nearest pin header.
2. Press the Reset push button of the battery pack 27.
 - At first, all LEDs of the battery pack will light up. In the following only the ON LED 22 and the CHARGE STATE LEDs 25 will continue to light.
 - The battery pack was successfully reset.
3. Slide the battery pack into the housing of the data logger.
4. Tighten the knurled screws of the battery pack

- Fully charge the batteries before the first use. See chapter 10.3 How to charge Batteries.

10.2 How to remove the Battery Pack from the Housing of the Data Logger

- Make sure the data logger is switched off.
- Make sure the data logger is disconnected from the power supply.
1. Loosen the knurled screws that hold the battery pack in place.
2. Remove the battery pack from the housing of the data logger.

- Make sure no short-circuits occur on the printed circuit board. Do not place any conductive piece (e.g. screwdriver) on the printed circuit board. Short-circuits will cause damage to the product.
Protect the assembly from electrical discharge. Only handle the assembly within a safe electrostatic environment.

10.3 How to charge Batteries

As long as the data logger is turned off, the battery pack will be charged fast.
In case the data logger is switched on, the battery pack will be charged slowly to avoid system overload and excessive heating.

The supply and the charging of the battery can be done in three possible charging scenarios:

Via the Battery Pack

→ Connect the DC plug of the mains adapter to the DC IN socket 26 of the battery pack and the mains plug to a wall socket.

Via the CPU Card

→ Connect the DC plug of the mains adapter to the DC IN socket 10 of the CPU card and the mains plug to a wall socket.

Simultaneously via the CPU Card and the Battery Pack

→ Connect the DC plug of the mains adapter to the DC IN socket 10 of the CPU card and the DC plug of another mains adapter to the die DC IN socket 26 of the battery pack. Connect the mains plugs to a wall socket.

➢ The batteries are fully charged as soon as all CHARGE STATE LEDs light up and the SLOW respectively the FAST CHARGE LED goes out.

10.4 How to query the Battery Power Supply

1. Log in to the ALMEMO® 500 app, or tap on the Back button until the home screen appears.
2. Tap on the button Settings.
3. Tap on the arrow next to Power supply.
4. Tap on the checkbox next to the text Refresh data of the battery pack.
The estimated remaining runtime, the battery voltage, the charging current, the battery status, the charging mode and the battery temperature of every battery pack used will be displayed.

10.5 How to deactivate Measuring Channels of the Battery Pack

By default, the measuring channels of the battery pack are activated. The measuring channels measure the battery voltage, the current, the battery status and the battery temperature for each battery. In case you deactivate a measuring channel, it will no longer be listed in the measured value display and its measuring data will not be recorded.

1. In the home screen, tap on the button Settings.
2. Tap on the arrow > next to Device settings.
3. Tap on the arrow > next to the battery pack you want to deactivate.
4. Tap on the arrow > next to Sensor overview.
5. Tap on the arrow > next to the battery whose measuring channels you want to deactivate.
6. Tap on the arrow > next to Sensor channels.
7. Tap on the checkbox next to the measuring channel you want to deactivate such that the checkbox is no longer ticked.

The measuring channel is deactivated.

10.6 How to clean the Battery Pack

→ Remove the battery pack from the housing of the data logger, see chapter 10.2 How to remove the Battery Pack from the Housing of the Data Logger.

→ Remove dust with low pressured compressed air.

⚠️ Only use low atmospheric pressures. High atmospheric pressures may cause damage to the electronics assembly.
10.7 How to query Information about the Battery Pack

1. In the home screen, tap on the button Settings.
2. Tap on the arrow next to Device list.
3. Tap on the arrow next to the battery pack whose information you want to query.
4. Tap on the arrow next to About the device.
 ➢ Device type, software version, device option and serial number will be displayed

10.8 How to ship the Battery Pack

⚠️ For safety reasons, the power supply of the battery pack provided by the battery must be properly interrupted before shipping the battery pack or the device with the integrated battery pack.

→ Remove the battery pack from the housing of the data logger, see chapter 10.2 How to remove the Battery Pack from the Housing of the Data Logger.

1. Remove the Battery sockets 28 from their respective pin headers.
 ➢ The power supply is now properly interrupted.
2. In case you want to ship the battery pack together with the device, please slide the battery pack back into the housing of the data logger.
3. Tighten the knurled screws of the battery pack.
11 Maintenance and Care

How to clean the Housing

! The data logger needs to be switched off.
! The data logger needs to be disconnected from the power supply.

→ If soiled, clean the housing with a damp cloth.

⚠️ Do not use aggressive detergents or solvents for cleaning.

How to clean measuring circuit boards and the CPU card

! The data logger needs to be switched off.
! The data logger needs to be disconnected from the power supply.

1. Loosen the knurled screws that hold the measuring circuit boards and the CPU card in place.
2. Remove the measuring circuit boards and the CPU card from the housing of the data logger.
3. Remove dust with low pressured compressed air.

⚠️ Only use low atmospheric pressures. High atmospheric pressures may cause damage to the electronics assembly.

⚠️ Protect the assembly from electrical discharge. Only handle the assembly within a safe electrostatic environment.

How to maintain the battery pack

→ Please charge your batteries on a regular basis and permanently provide a sufficient charging level.

⚠️ Deep discharges will severely limit the operating life of the battery.

→ Clean the battery pack on a regular basis, see chapter 10.6 How to clean the Battery.
Questions and Answers

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible cause</th>
<th>Possible solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The status display remains off. The status and control lights do not light up.</td>
<td>Incorrect supply voltage or empty battery</td>
<td>Charge batteries / exchange mains unit.</td>
</tr>
<tr>
<td>The data logger does not boot .</td>
<td>There are very large measurements in the database and the integrity check takes a few minutes.</td>
<td>Wait for a while during the boot process. Press the Reset push button 11 for at least three seconds (to do so, you will need a sharp pointed object). After releasing the button, the data logger will reboot. Reset the web service (see below)</td>
</tr>
<tr>
<td>The navigation keys cannot be operated.</td>
<td>The system is operating at full capacity and does not respond.</td>
<td>Press the Reset push button 11 for at least three seconds (for this purpose you need a pointed item). After releasing the button, the data logger will reboot. Disconnect the data logger from the power supply. Eventually remove the battery packs</td>
</tr>
<tr>
<td>It is not possible to establish a WLAN connection to the data logger.</td>
<td>WLAN login data is incorrect</td>
<td>Turn the data logger off and then on again. Try to establish a connection via Ethernet. Reset the access point (see chapter 8.1.6)</td>
</tr>
<tr>
<td>WLAN network of the data logger cannot be found.</td>
<td>incorrect configuration of the access point (e.g. unintentional deactivation of the WLAN)</td>
<td>Turn the data logger off and then on again. Try to establish a connection via Ethernet. Reset the access point (see chapter 8.1.6)</td>
</tr>
<tr>
<td>Login to the app fails .</td>
<td>User data incorrect, IP address incorrect, app connected to the wrong network, or database corrupt.</td>
<td>Check user data, IP address, and network. Switch the data logger off and on again. Make a web service reset (see further below).</td>
</tr>
<tr>
<td>The USB flash drive is not recognized.</td>
<td>The USB flash drive is defect or corrupt. Web service does not recognize USB flash drive.</td>
<td>Check the storage medium on a PC. Replace the USB flash drive. Make a web service reset (see further below).</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>The CHARGE STATE LEDs do not display the correct battery status.</td>
<td>Battery sockets are not connected or battery pack is not initialized correctly.</td>
<td>Switch the data logger off and disconnect the device from the power supply. Loosen the knurled screws of the battery pack and remove the battery pack from the data logger housing. Make sure that the battery sockets are plugged on the pin header (see chapter 10.1 Before the First Use). Press the Reset push button of the battery pack 27.</td>
</tr>
</tbody>
</table>

Web service reset

⚠️ Attention: During a web service reset, all measured values and user settings saved in the data logger will be deleted.

→ Switch off the data logger while pressing the right navigation key.

➢ A single beep followed by a triple beep will sound.

→ In case we could not answer your question, please contact the technical support (phone +49 (0)8024/3007-38, e mail help@ahlborn.com).
13 Warranty and Disposal

Warranty
Before leaving the factory, every device has passed several quality tests. For proper functioning, a 2 year warranty is granted beginning with the day of delivery. Before returning the device, please pay attention to the information provided in chapter 12 Questions and Answers. In case of a defect, please use – if possible – the original packing material and attach a precise description of the defect as well as of the corresponding boundary conditions.

The following cases are excluded from warranty:
- Unauthorized interventions and changes within the device performed by the customer
- Operation outside the indicated environmental conditions applicable for this product
- Use of improper power supply and peripheral devices
- Improper use of the device
- Damage due to electrostatic discharge or lighting
- Disregard of the Instruction Manual

We reserve the right to make changes in product features in favor of technical progress or due to new construction elements.

Disposal
The symbol of a crossed-out waste bin implies that the product must be disposed of separately in the European Union. This applies to the product itself as well as to all accessory components labeled with this symbol. The products must not be discarded via the unsorted municipal waste.

→ Dispose of defect rechargeable batteries / empty batteries in accordance with the legal requirements.

→ When no longer in use, the product must be disposed of at the collecting point specified for electrical and electronic equipment. In doing so, please observe the local disposal regulations.

→ Dispose of the packing material in accordance with local regulations.
14 Technical Data

Default configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring inputs</td>
<td>20 ALMEMO® input sockets
For all ALMEMO® sensors (V5, V6, D6, D7)</td>
</tr>
<tr>
<td>Channels (standard)</td>
<td>Up to 200 measuring channels</td>
</tr>
<tr>
<td>Expansion</td>
<td>Up to 90 ALMEMO® input sockets depending on the housing</td>
</tr>
<tr>
<td>Precision class</td>
<td>AA see Catalog p. 01.04</td>
</tr>
<tr>
<td>Measuring rate V5, V6, D6 sensors</td>
<td>100 / 50 / 10 / 2.5 mops</td>
</tr>
<tr>
<td>Input range</td>
<td>In the measuring range 2.6V: -2 to +3V
In all other measuring ranges: -1.9 to 2.9V</td>
</tr>
<tr>
<td>Overload</td>
<td>±12V</td>
</tr>
<tr>
<td>Input current</td>
<td>100pA</td>
</tr>
<tr>
<td>Measuring current</td>
<td>Pt100: 1mA, Pt1000: 0.1mA</td>
</tr>
<tr>
<td>System accuracy at 2.5 mops</td>
<td>0.02% of measured value ±2 digit</td>
</tr>
<tr>
<td>Temperature drift</td>
<td>0.003%/K (30ppm)</td>
</tr>
<tr>
<td>Galvanic isolation for analog sensors</td>
<td>Using semiconductor relays (50 V)
Additional galvanic isolation between measuring inputs and power supply (device ground)</td>
</tr>
<tr>
<td>Sensor power supply</td>
<td>6 / 9 / 12V, per card, maximum 400mA, per data logger maximum 1.2 A</td>
</tr>
<tr>
<td>Interfaces</td>
<td>2 USB ports for additional memory and networking, Ethernet, WLAN for accessing the web service and networking</td>
</tr>
<tr>
<td>Equipment:</td>
<td></td>
</tr>
<tr>
<td>Control unit</td>
<td>Industrial tablet with preinstalled app ALMEMO® 500</td>
</tr>
<tr>
<td>Memory</td>
<td>4GB SD memory card (sufficient for up to 600 million measured values)</td>
</tr>
<tr>
<td>Date and time-of-day:</td>
<td>Real-time clock (4.7ppm) buffered with lithium battery</td>
</tr>
<tr>
<td>Power supply:</td>
<td></td>
</tr>
<tr>
<td>Mains adapter</td>
<td>ZB1212NA10, 100 to 240 VAC</td>
</tr>
<tr>
<td>Rechargeable battery/ies (accessory)</td>
<td>to 12 VDC, 2 A galvanically isolated
2 lithium batteries, total of 13.8 Ah, Integrated high-speed charging (3 hours)</td>
</tr>
</tbody>
</table>
Technical Data

<table>
<thead>
<tr>
<th>Current consumption without input and output modules</th>
<th>ca. 300 mA without sensor / sensor technology (standard configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing</td>
<td>Desktop housing TG6: 390 x 160 x 260 (mm) (WxHxD)</td>
</tr>
<tr>
<td></td>
<td>Weight approx. 4 kg</td>
</tr>
<tr>
<td></td>
<td>Desktop housing TG8: 497 x 160 x 260 (mm) (WxHxD)</td>
</tr>
<tr>
<td></td>
<td>Weight approx. 4.5 kg</td>
</tr>
<tr>
<td></td>
<td>Rack housing BT8: 483 x 132 x 273 mm (WxHxD)</td>
</tr>
<tr>
<td></td>
<td>Weight approx. 4.5 kg</td>
</tr>
<tr>
<td>Suitable conditions</td>
<td>Operating temperature: -10 to +50 °C</td>
</tr>
<tr>
<td></td>
<td>(storage temperature: -20 to +60 °C)</td>
</tr>
<tr>
<td></td>
<td>Ambient humidity: 10 to 90 % RH (non-condensing)</td>
</tr>
</tbody>
</table>

Subject to technical modifications without prior notice!
15 Declaration of Conformity

EU-Konformitätserklärung
EU-Declaration of Conformity
nach/according to EN 17050-1

Hersteller: Ahlborn Mess- und Regelungstechnik GmbH
Adresse: Eichenfeldstrasse 1
83607 Holzkirchen
Germany

bestätigt, dass das Produkt
declares, that the product

Productbezeichnung:
Product Name:
Messwerterfassungsanlage Almemo® 500

Produkt Typ:
Product Type:
MA500CPUA20...

Produkt Optionen:
Product Options:
BT88, TG68, TG88

den nachfolgenden Europäischen Anforderungen und Richtlinien entspricht und folglich das Zeichen trägt.
conforms to following European Product Specifications and Regulations and carries the marking accordingly.

2014/35/EU Niederspannungsrichtlinie
Low Voltage Directive

2014/30/EU EMV Richtlinie
EMC Directive

1995/5/EG R&TTE Richtlinie
R&TTE Directive

Angewandte harmonisierte Normen
and technische Spezifikationen:
Applied harmonised standards and
technical specifications:
Sicherheit (Safety)
EN 61010-1: 2010+A1
EMV (EMC)
EN 61326-2-3: 2013 Tabelle 2

Holzkirchen, 20.10.2016
Ort, Datum der Ausstellung
Place, date of issue

Christian Schmidt /
Entwicklungsleitung

Rudolf Waldner /
Qualitätsmanagement

Subject to technical modifications without prior notice!
16 Subject Index

A
access data .. 78
access point 14, 36
 change IP address 51
 configure 51
 deactivate DHCP server 52
 reset to factory setting 53
acoustic signal 15
acoustic signal 30
acoustic signal 69
adjustment 76
administrator 76
ALMEMO® Control 12, 33, 35, 37, 63
ALMEMO® input sockets 2, 21
ALMEMO® plug 13, 16, 21
ALMEMO® Control 40
AMR WinControl 33, 35, 36, 37, 39
android device 39
app
 access data 78
 configure 76
 log out 77
 login 22
 login fails 84
 overview menus 44
 use on PC 37
arithmetic channel 65
atmospheric pressure compensation 30, 60, 66
Auto (line graph scaling) 27
average value 30
delete
 with every start 59
delete ... 75
averaging 30, 67
averaging function 68
averaging mode 68
avoid measuring errors 10
avoid product damages 10

B
battery operation 10
battery pack 10

B
 battery status 80, 85
 beep ... 85
 blue .. 69
 break .. 30
 Break .. 29

calibration data
 measuring circuit board 61
 sensor 62
calibration factor 72
calibration interval 62
 measuring circuit board 61
calibration offset 72
care ... 83
channel see measuring channel
channel compensation 72
channel designation 66, 68, 73
channel list 24
Channel list 24
channel locking 64
channel number 14
charge batteries 80
CHARGE STATE LEDs 16, 85
clean the housing 16, 85
cleaning 10, 83
coding switch 2, 16, 55
cold junction compensation 66, 68
 temperature 61
cold junction measurement
 data logger 46
 measuring circuit board 56
cold junction sensor 66
cold junction temperature 61
COM port .. 36
compensation
channel .. 72
cross-channel 60
configuration site access point 51
change password 53
configuration site of the access point
access data 78
connection
further network possibilities 42
to PC ... 35
via Ethernet 35
via USB ... 35
via WLAN 35
via PC
via company network 36
with tablet 22
CONT .. 68
control unit See tablet
conversion rate
data logger 46
measuring circuit board 56
set ... 58
correction 72
correction value 72
CPU card
cleaning .. 83
cross-section area 73
csv file .. 33
csv file .. 33
current consumption 87
CYCL ... 68
cycle factor 69
cyclic measured value scanning See storage cycle interval

D
data logger
clean the housing 83
connect to PC 35
connection to PC
Ethernet connection 35
USB connection 35
does not boot 84
global overview 2
information 54
operating parameter 55
recent message 54
key and switch functions 13
power supply 20
set .. 46
switch off 22
switch on 21
data storage mode 30
change ... 31
database
delete measurement 32
export measurement 33
set storage location 48
set storage size 48
datalogger
collection to PC
WLAN connection 35
DC IN socket 2
battery pack 80
declaration of conformity 89
deep discharge 83
delete exported measurements 34
deletion ... 32
derived measured value 65
device address (for AMR WinControl)
.. 40, 49
device compensation values 60
device list 45, 49
device number (for AMR WinControl)
.. 40, 49
device option
battery pack 82
device option measuring circuit board
.. 61
device settings
measuring circuit board 45, 58
device settings of the battery pack ... 81
device type
measuring circuit board 61
device type
battery pack 82
DHCP server 14, 36
decommission 52
difference 30
dimension 64
display ... 24
disposal ... 86
download of measurements 33
duration ... 32
intended use .. 11
interfaces .. 87
internal memory 33
iOS device ... 38
IP address .. 36
connected devices 14
CPU card ... 14
IP address of access point 14
iPad ... 38

L
limit value ... 69
limit value action
 for macros 58
 for start mode 49
 for stop mode 50
limit value actions 70
limit value overshoot 69
limit value over-shoot 29, 58
limit value undershoot 69
limit value undershooting 29
line graph ... 24, 25
 Auto (scaling) 27
 colour of measured value graphics 26
 dimension of the y-axis 26
 display saved measurements 28
 displayed measured values 25
 entire measurement (scaling) 27
 manual(scaling) 27
 right y-axis 25
 scale axes 27
 show/hide legend 27
 time and date format 26
linear memory 30
locking level 64
log .. 77
login ... 22
login app .. 22

M
Mac Book .. 38
macros ... 58
mains adapter 12, 16, 80
mains hum suppression 59
maintenance 83
manage user rights 76
administrator 76
delete user .. 77
new user ... 76
user data ... 77
viewer .. 76
manual .. 12
manual (line graph scaling) 27
maximum limit value 69
maximum value
delete ... 75
maximum value 30
delete
with every start 59
measured value changed 30
measured value damped 30
measured value display 24
measured value functions 24
measured value output 68
measured value presentation 24
Measured value presentation 24
measured value presentation 71
measured value smoothing 67
measurement
delete 32
export ... 33
delete exported measurements 34
to a USB flash drive 33
to PC ... 33
label ... 31
manage ... 31
monitor
measured value parameter 29
measurement active since 32
measurement channel
enable .. 73
measurement memory...... see database
measuring
start ... 23
measuring channel 13, 87
deactivate
battery pack 81
disable
sensor 74
lock ... 64
measuring channel function .. 46, 56, 59
measuring channel functions 64, 73, 76
measuring circuit board
information
power supply 61
serial number 61
measuring circuit board
information
device option 61
device type 61
information
software version 61
set ... 55
measuring circuit board
information
calibration data 61
measuring circuit board
cleaning ... 83
measuring circuit board address 14, 16
Measuring circuit board address
change ... 55
measuring inputs 87
measuring inputs (see measuring channel) 13
measuring operation
start .. 23
measuring point number 62
measuring range 14, 63, 64
measuring range limit 69
measuring range MesR 66
measuring range overrange 29
measuring range underrange ... 29
measuring rate 87
measuring rate
data logger 46
measuring circuit board 56
memory status 32
menus ... 44
minimum limit value 69
minimum value 30
delete
with every start 59
delete ... 75
monitor measured value parameter .. 29
monitor measuring operation 24
multiplexer 64

N
name of the current measurement... 32
navigation keys 2, 13
not operable 84
network ... 35, 42
network key 78
change ... 53
Subject Index

O
ON LED ... 21
battery pack 79
ON/OFF key 2
operand .. 66
operating parameter
 measuring circuit board 59
 power supply data logger 20
operating parameters
 measuring circuit board 45
operating time battery pack 15
output cycle
 measuring circuit board 56
output cycle
 data logger 46, 47
output cycle
 measuring circuit board 57
output function
 alarm value 30
 average value 30
 minimum value 30
output function
 difference 30
 maximum value 30
output function
 overrange 68
 overshooting of maximum limit value 29

P
packing material 86
parameter representation 29
password
 App ... 78
 configuration access point 78
 WLAN data logger 78
PC connection 35
PDF instruction manual 54
plug 16, See ALMEMO® plug
power saving mode 22
power supply 87
data logger 20
 operating parameter 20
 measuring circuit board 61
precision class 87

Q
Query battery power supply 80
questions and answers 84
 - 92 –
quick start See initial Operation

R
range measuring channel 63, 64
range of calculation 65
red .. 69
reference channel 64
REL .. 30
relative value 30
remaining rest storage time see duration
Reset
 battery pack 79
reset push button 2
rest storage time see duration
ring memory 30

S
safety note 10
saved measurement export 33
saved measurements delete 32
display 28
scaling of line graph 27
scaling value 71
scan cycle
 data logger 47
 measuring circuit board 57
scanning cycle
 data logger 46
 measuring circuit board 56
scanning time
 data logger 46
 measuring circuit board 56
SD memory card 34, 35
SD memory card 87
sensor
 configuration 63
 connection 21
 D6 .. 13
 D7 .. 13
 disconnection 21
display 62
serial number 62
set ... 62
set range 63
software version 62
V5 ... 13
V6 ... 13
sensor breakage 30
sensor channel see measuring channel
sensor configuration 63
sensor list 44
sensor power supply 87
sensor type 62
sensor voltage
 set .. 60
sensor voltage too low 29
sequence control See storage cycle interval
serial commands 58
serial number
 battery pack 82
 data logger 54
 measuring circuit board 61
 sensor 62
set measuring period 50
set timer to zero limit value action ... 71
setpoint adjustment 76
settings 46
single measurement 70
size of storage location 48
slow charge 80
SLOW CHARGE LED 16
software 12
software version
 battery pack 82
 CPU card 54
 measuring circuit board 61
 sensor 62
START LED 23
start macro limit value action 23
start measuring limit value action 70
start mode 49
start time of the current measurement .. 32
starting the measuring operation 23
status and control lights 84
 CPU card 2
 measuring circuit board 2
status display 2, 84
 power saving mode 22
stop measuring limit value action 70
stop mode 49
stopping the measuring operation 23
storage cycle
 all measuring circuit boards 57
data logger 46, 56
 measuring circuit board 46, 56
storage cycle interval
 data logger 46
 measuring circuit board 56
storage cycle of all measuring circuit boards .. 57
storage expansion 48
storage location 48
storage location 48
storage mode see data storage mode storage size 48
suitable conditions 88
symbol explanation
 waste bin 86
symbol explanation
 memory status 32

T
tablet ... 12
 choose WLAN network 17
 connection with data logger 22
 unlock 17
Tablet mount 12
Technical data 87
temperature compensation 30, 60
temperature sensor 66
thermocouple measurements 30, 60
time and date data logger 46
trigger event 58
trigger signal
 for start mode 49
 for stop mode 50
triple beep 85

U
U-Low ... 29
underrange 29
undershooting of minimum limit value .. 29
USB data cable 12, 36
USB flash drive 84
USB-A socket 2, 82
USB-B socket 2, 82
user menu 24, 28
empty cells 29
set up 28
user name
 App.. 78
 configuration access point........... 78

V

viewer .. 76
volume flow measurement.............. 73

W

warranty....................................... 86
web service initialization 21
web service-reset 85
web site with exported measurements
 ... 34
website 98
WiFi socket................................. 2
WinControl........... See AMR WinControl
WLAN
 access data 78
 change network key.................... 53
 DHCP server 14
WLAN access point ... see access point
WLAN antenna 12, 16
WLAN connection 84
WLAN network ... 14, 17, 35, 38, 39, 84
WLAN SSID
 change................................. 52
 query 77
WLAN-SSID
 data logger 17, 38, 39

Z

zero point.................................. 72
zero-setting.............................. 76
Besides greatest diligence, the possibility of incorrect information cannot be excluded.
Subject to technical modifications without prior notice.
You will find the present and further Operating Instruction, as well as the ALMEMO® Manual on www.ahlborn.com under the tab SERVICE on DOWNLOADS.

© Ahlborn Mess- und Regelungstechnik GmbH 2018
All rights reserved.

Ahlborn Mess- und Regelungstechnik GmbH,
Eichenfeldstraße 1-3, 83607 Holzkirchen, Germany
Phone +49(0)8024/3007-0, Fax +49(0)8024/300710
Internet: http://www.ahlborn.com, Email: amr@ahlborn.com

PLEASE KEEP THIS INSTRUCTION MANUL FOR FURTHER REFERENCE