Operating instructions

Universal measuring instrument
ALMEMO® 2450-1

V2.3
06.11.2013

www.ahlborn.com
1. OPERATING CONTROLS

(1) Measuring inputs M0
 M0 for a wide range of sensors
 M10 to M30 3 additional channels

(2) Analog output P0 (option)
 P0 Clamp connector (ZA 1000-KS)

(3) Outputs A1, A2
 A1 USB interface (ZA 1919-DKU)
 RS232 (ZA 1909-DK5)
 Optic fiber (ZA 1909-DKL)
 Ethernet (ZA 1945-DK)
 RS 422 (ZA 5099-NVL/NVB)
 Trigger input (ZA 1000-ET/EK)
 Relay outputs (ZA 1006-EGK)
 A2 Network cable (ZA1999-NK5/NKL)
 Trigger input (ZA 1000-ET/EK)
 Relay outputs (ZA 1006-EGK)
 Analog output (ZA 1601-RK)

(4) Connection DC 12V (not type L)
 Mains adapter(ZA1312-NA1,12V, 0.2A)
 Cable, el. isol. (ZA2690-UK,10-30V)
 Interface RS 485 (option)

(5) LCD
 Function field
 (a) Function
 (b) Measuring point, 2nd meas. value
 (c) Units for 2nd measured value
 Main field
 (c) Units for 1st measured value
 (e) 1st measured value
 (f) Operating states :
 LOBAT Battery voltage <3.8 V
 REL Relative measuring
 CORR Measured value corrected

(6) Operating keys
 ON OFF Switch the device on
 To switch device OFF, press and hold down
 M▲ M▼ Meas. point selection
 MAX MIN Max. / min. value
 CLR clear; press and hold down
 MEM Measured value memory
 CLR Relative measuring,
 Adjust sensor,
 cancel: press and hold down

Rear of device

(7) Battery compartment
 3 AA alkaline-manganese batteries
2. CONTENTS

1. OPERATING CONTROLS ... 2

2. GENERAL .. 5
 3.1 Warranty .. 5
 3.2 Scope of delivery ... 6
 3.3 Waste disposal ... 6

4. SAFETY INSTRUCTIONS ... 7
 4.1 Special notes on use ... 8
 4.2 Handling batteries / rechargeable batteries correctly 8

5. INTRODUCTION .. 8
 5.1 Functions ... 9
 5.1.1 Sensor programming .. 9
 5.1.2 Measuring operations .. 10
 5.1.3 Process control .. 12

6. INITIAL COMMISSIONING ... 13

7. POWER SUPPLY ... 14
 7.1 Battery operation and supply voltage monitoring 14
 7.2 Mains operation ... 14
 7.3 External DC voltage supply .. 14
 7.4 Sensor supply ... 14
 7.5 Switching ON / OFF, reinitialization 14
 7.6 Data buffering ... 15

8. CONNECTING THE TRANSDUCERS ... 15
 8.1 Transducers ... 15
 8.2 Measuring inputs and additional channels 15
 8.3 Potential separation .. 16

9. DISPLAY AND KEYPAD .. 17
 9.1 Display .. 17
 9.2 Keypad ... 18

10. MEASURING OPERATIONS ... 19
 10.1 Measured value ... 19
 10.1.1 Selecting a measuring point 19
 10.1.2 Measuring ranges .. 20
 10.1.3 Double display ... 21
 10.2 Peak value memory ... 21
 10.3 Measured value memory ... 22
 10.4 Relative measuring ... 22

11. OUTPUTS .. 22
 11.1 Interfaces .. 22
2. Contents

11.2 Analog outputs .. 23

12. DEVICE CONFIGURATION ... 24
 12.1 Device address and networking ... 24
 12.2 Analog output ... 25
 12.3 Switching OFF automatically ... 26
 12.4 Device locking .. 26

13. TROUBLE-SHOOTING .. 26

14. DECLARATION OF CONFORMITY ... 28

15. APPENDIX .. 28
 15.1 Technical data ... 28
 15.2 Product overview .. 29
 15.3 Index ... 30
 15.4 Your contact .. 32
3. GENERAL

Congratulations on your purchase of this new and innovative ALMEMO® measuring instrument. Thanks to the patented ALMEMO® connector the device configures itself automatically; its operation should be fairly straightforward. The device can, however, be used with such a wide range of sensors and peripherals and offers many different special functions. You are advised therefore to properly familiarize yourself with the way the sensors function and with the device's numerous possibilities and take the time to carefully read these operating instructions and the appropriate sections in the ALMEMO® Manual. This is absolutely necessary to avoid operating and measuring errors and to prevent damage to the device. To help you find the answers to your questions quickly and easily there is a comprehensive index at the end both of these instructions and of the Manual.

3.1 Warranty

Each and every device, before leaving our factory, undergoes numerous quality tests. We provide a guarantee, lasting two years from delivery date, that your device will function trouble-free. Before you send your device to us, please observe the advisory notes in Chapter 13. Trouble-shooting In the unlikely event that the device proves defective and you need to return it please wherever possible use the original packaging material for dispatch and enclose a clear and informative description of the fault and of the conditions in which it occurs.

This guarantee will not apply in the following cases:

- The customer attempts any form of unauthorized tampering or alteration inside the device.
- The device is used in environments and conditions for which it is not suited.
- The device is used with unsuitable power supply equipment and / or peripherals.
- The device is used for any purpose other than that for which it is intended.
- The device is damaged by electrostatic discharge or lightning.
- The user fails to observe and comply with the operating instructions.

The manufacturer reserves the right to change the product's characteristics in the light of technical progress or to benefit from the introduction of new components.
3. General

3.2 Scope of delivery
When you unpack the device check carefully for any signs of transport damage and ensure that delivery is complete.

Measuring instrument ALMEMO® 2450-1 with 3 AA alkaline batteries
These operating instructions
ALMEMO® Manual
CD with the AMR-Control software and various useful accessories

In the event of transport damage please retain the packaging material and inform your supplier immediately.

3.3 Waste disposal
The pictogram showing a waste bin crossed through means that the product is subject to European Union regulations on segregated waste disposal. This applies both to the product itself and to any accessories marked with the same symbol. Disposal of any such item as unsorted domestic waste is strictly forbidden.

- Please dispose of all packaging materials according to the applicable national waste management regulations.
- Please dispose of cardboard boxes, protective plastic packaging materials, and all preservative substances separately and in the proper manner.
- The disposal of the device itself (also of device parts, accessories, and consumables) is subject to the applicable national and local waste management regulations and to the environmental protection legislation in force in the country of use.
- Please dispose of all waste in the proper manner; this applies in particular to all parts and substances that constitute a hazard for the environment. This includes inter alia plastics, batteries, and rechargeable battery packs.
- When disposing of goods, please wherever possible use the original packaging materials.
4. SAFETY INSTRUCTIONS

DANGER Danger to life and limb, risk of damage to equipment
Read the instructions carefully before starting to operate the device.
Please ensure that you comply with all general safety advice and the special safety instructions included in other chapters.

Such risks may occur in the following circumstances:

• Failure to heed the operating instructions and all the safety notes these contain
• Any form of unauthorized tampering or alteration inside the device
• Use of the device in environments or conditions for which it is not suited
• Use of the device with an unsuitable power supply and / or in conjunction with unsuitable peripheral equipment
• Use of the device for any purpose other than that for which it is intended
• Damage caused by electrostatic discharge or lightning.

DANGER Risk of fatal injury caused by dangerously high voltage
Such risks may occur in the following circumstances:

• Use of the device with an unsuitable power supply and / or in conjunction with unsuitable peripheral equipment
• Damage caused by electrostatic discharge or lightning
• Do not run sensor lines in the vicinity of high-voltage power cables.
• Before you touch any sensor lines, ensure that all static electricity has been discharged.
4. Safety instructions

DANGER Warning - explosive atmospheres or substances

In the vicinity of various fuels or chemicals there is a risk of explosion.

Do not use the device in the close vicinity of blasting work or filling stations!

4.1 Special notes on use

• If the device is brought into the work-room from a cold environment there is a risk that condensation might form on the electronics. In measuring operations involving thermocouples pronounced changes in temperature may cause substantial measuring errors. You are advised therefore to wait until the device has adjusted to the ambient temperature before starting to use it.

• Before using the mains adapter make sure that the mains voltage is suitable.

• Be sure to observe the maximum load capacity of the sensor power supply.

• Sensors with their own integrated power supply are not electrically isolated from one another

4.2 Handling batteries / rechargeable batteries correctly

When inserting batteries / rechargeable batteries ensure that these are correctly polarized.

If the device will probably not be needed for a relatively long period of time or if the batteries are empty, remove the batteries; this will prevent battery acid leaking onto the device and damaging it.

Rechargeable batteries should be recharged as and when necessary.

You should never attempt to recharge an ordinary (non-rechargeable) battery; it may explode!

Batteries / rechargeable batteries must never be short-circuited or thrown onto the fire.

Batteries / rechargeable batteries are special waste and must not be discarded together with normal domestic waste.
5. INTRODUCTION

The ALMEMO® 2450-1 is a new member in our family of unique measuring devices - all equipped with Ahlborn's patented ALMEMO® connector system. The intelligent ALMEMO® connector offers decisive advantages when connecting sensors and peripherals because all parameters are stored in an EEPROM located on the connector itself; repeat programming is thus no longer necessary. All sensors and output modules can be connected to all ALMEMO® measuring instruments in the same way. Programming and functioning are identical for all units. The following points apply to all devices in the ALMEMO® measuring system; these are described in detail in the ALMEMO® Manual which is included in delivery with each device.

Detailed explanation of the ALMEMO® system (Manual Ch 1)
Overview of the device functions and measuring ranges (Manual Ch 2)
Basic principles, operation, and technical data for all sensors (Manual Ch 3)
Options for connecting your own existing sensors (Manual Ch 4)
All analog and digital output modules (Manual Section 5.1)
Interface modules USB, RS232, optic fiber (Manual Section 5.2)
The whole ALMEMO® networking system (Manual Section 5.3)
All functions and their operation via the interface (Manual Ch 6)
Complete list of interface commands with all the printouts (Manual Ch 7)

The operating instructions you are now reading cover only those features and controls that are specific to this device. Many sections therefore also refer to the more detailed description in the Manual; (see Manual, Section xxx).

5.1 Functions

The ALMEMO® 2450-1 measuring instrument has just one measuring input suitable for most ALMEMO® sensors - with the single exception of resistance sensors and some special sensors. The measuring possibilities are numerous; there are 4 channels in the sensor connectors with over 40 measuring ranges. For operation purposes the device incorporates a large LCD display and a key-pad. An option is available with an internal electrically isolated analog output (socket P0) including a DC socket for a mains adapter. The standard interface version has three output sockets for ALMEMO® output modules, namely A1 and A2 for digital interfaces and trigger and relay cables, A2 for an analog output, and a DC socket for a mains adapter. Several devices can be networked by simply linking them together via cable.

5.1.1 Sensor programming

The measuring channels are programmed, completely and automatically, by the ALMEMO® connectors. The user can supplement or modify this programming; this applies to the interface version only. However, devices without the interface also behave according to all the programmed parameters.
5. Introduction

Measuring ranges
Appropriate measuring ranges are available for all sensors with a non-linear characteristic, e.g. 7 thermocouple types, NTC probes, and flow transducers (rotating vanes, thermoanemometers). For humidity sensors additional function channels are available for calculating humidity variables such as dew point, mixture ratio, vapor pressure, and enthalpy. Measured values from other sensors can also be acquired using the voltage and current ranges with individual scaling in the connector. Existing sensors can also be used - so long as the appropriate ALMEMO® connector is connected via its screw terminals. For digital input signals, frequencies, and pulses, adapter connectors are available with an integrated microcontroller. It is thus possible to connect numerous sensor types to any ALMEMO® measuring instrument and to change sensors without the need for any extra settings.

Function channels
Maximum, minimum, and average values of certain measuring points can be programmed as function channels and can be processed and printed like normal measuring points.

Units
The 2-character units display can be adapted for each measuring channel so that both the display and the printout always indicate the correct units, e.g. when a transmitter is connected. Conversion between °C (Centigrade) and °F (Fahrenheit) is performed automatically.

Measured value designation
Each sensor is identified by means of a 10-character alphanumeric name. This name is entered via the interface and will appear in the printout or on the computer display.

Correction of measured values
The measured value on each measuring channel can be corrected both in terms of zero-point and gain; this means that even sensors usually requiring initial adjustment (e.g. expansion, force) can be freely interchanged. Sensors with multi-point calibration can also be connected; (see Manual Section 6.3.13).

Scaling
The corrected measured value on each measuring channel can also be further scaled in terms of zero-point and gain - using the base value and factor. The decimal point position can be set by means of the exponent function.

Limit values and alarm
Per measuring channel two limit values can be set (1 maximum and 1 minimum). In the event of one of these limit values being exceeded relay output modules actuate the associated alarm contacts; these can be allocated individually to specific limit values. Hysteresis is set by default to 10 digits but this can be adjusted to any number between 0 and 99. The exceeding of a limit value can also be used to start or stop measured value recording automatically.
Functions

Sensor locking
All sensor data stored in the connector EEPROM can be protected by means of a graduated locking function against undesired access.

5.1.2 Measuring operations
A total of up to 4 measuring channels are available for 1 transducer; i.e. it is also possible to evaluate double sensors, individually scaled sensors, and sensors with function channels. You can move forwards or backwards from one measuring channel to the next using the keypad. The selected measuring point is by default assigned preferred status and is scanned at half the measuring rate; all other active channels are also scanned but in the background (semi-continuous mode). The data is output on the display and, if available, to an analog output. To shorten the response time when there are several measuring points the measuring rate can be set to continuous and increased accordingly.

Measured values
The measured value for the selected measuring point is shown continuously with autozero and, as and when necessary, with measured value correction. With most sensors, sensor breakage is detected automatically (except for connectors with shunt, dividers, or additional electronics).

Analog output and scaling
Each measuring point can be scaled by means of analog start and analog end (also via the keypad) in such a way that the measuring range thus defined covers the full range of the analog output (2 V, 10 V, or 20 mA). At the analog output the device can output the measured value from any measuring point or a programmed value.

Measuring functions
With some sensors, to achieve optimal measured value acquisition, certain special measuring functions are required. These include e.g. cold junction compensation for thermocouples and temperature and atmospheric pressure compensation for certain humidity variables.

Measured value smoothing
Measured values of an unstable or strongly fluctuating nature can be smoothed by means of a sliding average over a number of values programmable from 2 to 99.

Maximum and minimum values
For each measuring operation the maximum value and minimum value are acquired and saved to memory. These values can then be displayed, output, or deleted from memory.

Measured value memory
A measured value in the display can be saved by simply pressing a key.
5. Introduction

5.1.3 **Process control** (interface functions, see Manual Ch 6, not type L)
To record the measured values from all connected sensors in digital form measuring point scanning is performed continuously with measured value output according to a time-based process control. This may be per cycle or, if really rapid results are required, at the measuring rate itself. The measuring operation can be started and stopped via the interface by means of an external trigger signal or by a specified limit value being exceeded.

Date and time-of-day
Date and time-of-day can be freely set and then used in the logging of measuring operations. When the batteries are replaced these date and time-of-day settings are lost and have to be reset.

Cycle
The cycle can be programmed to any value between 00:00:01 (1 second) and 59:59:59 hh:mm:ss. This function permits cyclic output of measured values to the interfaces and cyclic calculation of average values.

Print cycle factor
The print cycle factor can be used to limit data output from particular channels; this may be necessary in order to reduce excessive data flow especially while data is being saved.

Averaging over measuring point scans
The measured values from measuring point scans can be averaged either over the whole measuring duration or over the specified cycle. These average values can then be output and saved on a cyclic basis to function channels provided for this purpose.

Measuring rate
All measuring points are scanned at the measuring rate (2.5 or 10 mops). To accelerate recording it is also possible to output all measured values at this measuring rate via the interface.

Control outputs
Output relays and analog outputs can be individually addressed via the interface.

Output
All data logs, measured values, and programming parameters can be output to any peripheral equipment. RS232, RS422, USB, and Ethernet interfaces are available using the appropriate interface cables. Measured data can be output in list, column, or table format. Files in table format can be processed directly using any standard spreadsheet software. The print header can be programmed to refer specifically to your company or to your application.

Networking
All ALMEMO® devices can be addressed and can be easily networked by simply linking them together via network cable or over longer distances via an internal RS485 interface (option) or RS422 network distributors.
Software
Each ALMEMO® Manual is accompanied by the AMR-Control software package, which can be used to configure the measuring instrument and to program the sensors. Using the integrated terminal, measuring operations can also be performed online. The WINDOWS® software package WIN-Control is provided for the purposes of measured value acquisition via networked devices, for graphical presentation, and for more complex data processing.

6. INITIAL COMMISSIONING
1. Connect sensor to socket M0 (1); see 8.
2. Ensure that the power supply is provided by 3 AA batteries or mains adapter;
3. To switch ON press key ON (6); see 7.5
4. Select measuring channels by pressing key M (6), read out measured values (5e); see 10.1.1
5. Save the measured value by pressing key MEM (6); see 10.3
6. Relative measuring to a reference value by pressing key CLR (6)
 Revert to normal measured value by pressing and holding down key CLR
7. Evaluating a measuring operation
 Call up maximum / minimum values by pressing keys MAX / MIN (6)
 To delete max. / min. value(s) press and hold down key MAX or MIN see 10.2
8. Programming or data output via interface (option)
 Connect computer via interface cable to socket A1: see Manual 5.2.
 Activate supplied software AMR-Control.
 Via ‘Setup interface’ set the COM port and transmission rate to 9600 bauds.
 Program the sensors via ‘Program measuring point list’.
 Measured value display and sensor adjustment via ‘Measuring points - Measured values’
 Data logging on the computer :
 Program the cycle via ‘Devices - Programming’
 Open the terminal window via ‘File - Terminal’
 ‘File - Terminal - Open log’, enter file name, ‘Save’
 Start the measuring operation by click ‘Start’
 Stop the measuring operation by click ‘Stop’
 ‘File - Terminal - Close log’
 Activate file e.g. from MS-Excel and import using ‘;’ as separator;
 see Manual 6.1.4.
7. **POWER SUPPLY**

Power can be supplied to the measuring instrument in any of the following ways: 3 AA alkaline batteries (included in delivery)
- Mains adapter 12V, 0.2A with ALMEMO® connector ZA1312-NA1
- Electrically isolated power supply cable (10 to 30 VDC, 0.25 A) ZA2690-UK
- 12V DC clamp connector to socket DC (options U and I) ZA1000-FSV

Our product spectrum includes all the appropriate accessories.

7.1 Battery operation and supply voltage monitoring

Power is supplied to the measuring instrument as delivered by 3 AA batteries. At a current consumption of approx. 10 mA the operating time will be approx. 250 hours. The current operating voltage is displayed each time the device is switched on; this gives you a basis for estimating the remaining operating time. When the remaining battery capacity drops to approx. 10 percent, the **LO-BAT** arrow will appear in the display. If the batteries are completely discharged the device will switch off. To replace old batteries first unscrew the battery compartment cover (7) on the rear of the device.

7.2 Mains operation

The ALMEMO® 2450-1 can be supplied with power from an external source preferably using mains adapter ZA 1312-NA1 (12 V / 0.2 A) via the DC socket (4). Please ensure that the mains voltage is correct.

7.3 External DC voltage supply

The DC socket (4) can also be used to connect another DC voltage, 10 to 30 V (minimum 200 mA). This is via an ALMEMO® connector (ZA1000-KS). If, however, the power supply has to be electrically isolated from the transducers, then option U (OA 2450-U) is needed or electrically isolated supply cable ZA 2690-UK must be used. It will then be possible to use the measuring instrument in a 12-volt or 24-volt on-board supply system.

7.4 Sensor supply

At the terminals + (plus) and – (minus) in the ALMEMO® connector there is a 9-volt sensor supply voltage available (maximum 150 mA) (self-healing fuse, 500 mA). Other voltages (12, 15, or 24 V or references for a potentiometer and strain gauge) can be obtained using special connectors; (see Manual 4.2.5 and 4.2.6).

7.5 Switching ON / OFF, reinitialization

To switch the device ON briefly press and release the key **ON OFF** (6) in the middle of the keypad; to switch the device, OFF press and hold down the key **ON OFF**. After the device is switched off all saved values and settings are retained intact; (see 7.6).

If interference (e.g. electrostatic) or a malfunction (e.g. battery failure) causes...
the device to behave abnormally, the device can be reinitialized. To activate RESET press and hold down the key CLR when switching on. This will restore all settings - except the device designation - to the factory default status. Only the programming of the sensors in the ALMEMO® connectors remains unaffected.

7.6 Data buffering
The sensor's programming is stored in the EEPROM on the sensor connector and the device's calibration and programmed parameters are stored in the EEPROM on the instrument itself, both on a fail-safe basis. Date and time-of-day are retained intact if the device is just switched off but are lost when the batteries are replaced.

8. CONNECTING THE TRANSDUCERS

Only certain ALMEMO® sensors can be connected to ALMEMO® input socket M0 (1), namely those programmed with measuring ranges as per Ch 10.1.2. Attempting to connect any other sensor here will trigger an error message. To connect your own existing sensors you simply need the appropriate ALMEMO® connector.

8.1 Transducers
The ALMEMO® Manual includes detailed descriptions of the ALMEMO® range of sensors (see Manual Ch 3) and instructions for connecting your own existing sensors to ALMEMO® instruments (see Manual Ch 4). All suitable sensors with an ALMEMO® connector (see above) have the measuring range and units already programmed and can thus be connected to the input socket without further adjustment. A mechanical coding system ensures that sensors and output modules can only be connected to the correct sockets. All ALMEMO® connectors incorporate two snap-lock levers; these snap into position as soon as the connector is inserted into the socket, thus preventing unintended disconnection if the cable is accidentally pulled. To withdraw the connector, both these levers must be pressed in at the sides.

For the ALMEMO® 2450-1 version with the optional seal new specially designed sensors are available with spray-coated ALMEMO® connectors incorporating a double sealing lip to protect the socket unit against the effects of splashing water. For any unused sockets protective stoppers are available.

8.2 Measuring inputs and additional channels
The ALMEMO 2450-1 measuring instrument has one input socket (1) to which initially measuring channel M0 is assigned. ALMEMO® sensors can, however, if necessary, provide up to four channels. The additional channels can be used in particular for humidity sensors with four measuring variables (temperature / humidity / dew point / mixture ratio) or for function channels. Each sensor can if
Connecting the transducers

necessary be programmed with several measuring ranges or scaling settings; and two or three sensors, if pin assignment so permits, can be combined in a single connector (e.g. rH / NTC, mV / V, mA / V, etc.). The additional measuring channel numbers per connector go up in steps of 10 (e.g. the first sensor has channels M0, M10, M20, M30).

Double connectors with 2x differential voltage / differential current cannot be used with this device.

On the measuring instrument this gives the following channel assignment:

8.3 Potential separation

When organizing a properly functioning measuring setup it is very important to ensure that no equalizing current can flow between sensors, power supply, and peripherals. All points must therefore lie at the same potential and / or any unequal potentials must be electrically isolated.

Sensors combined within one connector and sensors with their own power supply are electrically interconnected and must therefore be operated in isolation. The voltage at the measuring inputs themselves must not exceed 5 volts (between B, C, D, A and -).

The power supply is isolated by the transformer in the mains adapter or by a DC/DC converter (OA2450-U or ZA2690-UK). Data and trigger cables are equipped with optocouplers. Where analog output cables are not electrically isolated the recording device or the sensors must be zero-potential.
9. DISPLAY AND KEYPAD

9.1 Display
The display (5) on the ALMEMO® 2450-1 measuring instrument is a 2-row LCD arrangement; the main field comprises 5x 7-segment digits (e) plus 2x 16-segment digits (d) for depicting the measured value; the function field comprises 41/2x 7-segment digits (b) for depicting various measuring functions (a); there are also 2 arrows (f) for depicting the operating status.

Function field

Main field

Display of measuring functions in the function field

<table>
<thead>
<tr>
<th>Measuring point</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum value</td>
<td>MAX 36.5</td>
</tr>
<tr>
<td>Minimum value</td>
<td>MIN 17.3</td>
</tr>
<tr>
<td>Saved value</td>
<td>36.2</td>
</tr>
<tr>
<td>Temperature value from double sensors</td>
<td>26.5 °C</td>
</tr>
<tr>
<td>Configuration of device address</td>
<td>Adr</td>
</tr>
<tr>
<td>Configuration of analog reference channel</td>
<td>ACh1</td>
</tr>
<tr>
<td>Configuration of locking</td>
<td>Loc</td>
</tr>
<tr>
<td>Configuration of automatic OFF</td>
<td>AOFF</td>
</tr>
</tbody>
</table>
9. Display and keypad

Special operating states and faults

Display segment test : runs automatically after switch ON
Supply voltage
 Under 3.8 V : Display after segment test
 LOBAT arrow lights up
Relative measuring with respect to a reference value : REL arrow lights up
Measured value corrected : CORR arrow lights up

Checksum error in device calibration : CALEr
Non-connected sensors, deactivated measuring points :

Measuring range / function not permitted : Err
Multiplexer M5 (D-B) is not permitted : ErrI
Sensor breakage :
 NiCr flashes
Outside of measuring range, undershoots cold junction compensation or cold junction compensation breakage :
 CJ flashes
Overshoots values range (>65000) :
 65000 flashes
Overshoots measuring range : Maximum value flashes
Undershoots measuring range : Minimum value flashes

9.2 Keypad
To operate the device a keypad with 7 keys is provided :

- **Function :**
 - To switch ON the device : (see Section 7.5) **Key**
 - **ON OFF**
 - To switch OFF the device :
 - **ON OFF**
 - must be pressed and held down

18 ALMEMO® 2450-1
Function:
Selection of measuring points (see Section 10.1.1)
Displaying the maximum value : (see Section 10.2)
To delete press and hold down
Displaying the minimum value : (see Section 10.2)
To delete press and hold down
Zero-setting the measured value : (see Section 10.4)
To delete press and hold down
Saving the measured value : (see Section 10.3)
Displaying the battery voltage :

| Key | M▲ or M▼ | MAX | MIN | CLR | MEM | ON OFF |

10. MEASURING OPERATIONS

On the ALMEMO® 2450-1 all measuring channels, whenever available, are scanned semi-continuously at 2.5 mops; (see Manual 6.5).
Up to 4 measuring points can be displayed; (see Section 8.2)
A measured value can be sent to an analog output; (see 12.2, Manual Section 5.1.1).

10.1 Measured value

After switching ON first of all a segment test is performed; then the battery voltage appears and if the batteries are almost empty (<3.8 V) the LOBAT arrow also appears.

The measured value is then displayed with the appropriate units in the main field and the measuring point is displayed in the function field. All special operating states possible for the measured value are explained in Section.

10.1.1 Selecting a measuring point

By pressing key M▲ you can select one after the other all active measuring points and have the current measured value displayed for each. By pressing key M▼ you can return to the previous channel.
To increment the measuring channel press key : M▲
To decrement the measuring channel press : M▼

When switching between channels the abbreviation for the measuring range is briefly displayed; (see 10.1.2).
10. Measuring operations

10.1.2 Measuring ranges
With each channel switchover or sensor breakage the abbreviation for the measuring range appears in the display. For identification purposes the following table lists all possible measuring ranges supported by this device.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Sensor / connector</th>
<th>Measuring range</th>
<th>Units</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCr-Ni (K)</td>
<td>FT Axxx</td>
<td>-200.0...+1370.0</td>
<td>°C</td>
<td>NiCr</td>
</tr>
<tr>
<td>NiCroSil-NiSil (N)</td>
<td>ZA 9020-FSN</td>
<td>-200.0...+1300.0</td>
<td>°C</td>
<td>NiSi</td>
</tr>
<tr>
<td>Fe-CuNi (L)</td>
<td>ZA 9000-FSL</td>
<td>-200.0...+900.0</td>
<td>°C</td>
<td>FECO</td>
</tr>
<tr>
<td>Fe-CuNi (J)</td>
<td>ZA 9000-FSJ</td>
<td>-200.0...+950.0</td>
<td>°C</td>
<td>IrCo</td>
</tr>
<tr>
<td>Cu-CuNi (U)</td>
<td>ZA 9000-FSU</td>
<td>-200.0...+600.0</td>
<td>°C</td>
<td>CUCO</td>
</tr>
<tr>
<td>Cu-CuNi (T)</td>
<td>ZA 9000-FST</td>
<td>-200.0...+400.0</td>
<td>°C</td>
<td>CoCo</td>
</tr>
<tr>
<td>PtRh10-Pt (S)</td>
<td>FS Axxx</td>
<td>0.0...+1760.0</td>
<td>°C</td>
<td>Pt10</td>
</tr>
<tr>
<td>Ntc Typ N</td>
<td>FN Axxx</td>
<td>-20.00...+100.00</td>
<td>°C</td>
<td>Ntc</td>
</tr>
<tr>
<td>Millivolt</td>
<td>ZA 9000-FS0</td>
<td>-10.000...+55.000</td>
<td>mV</td>
<td>U 55</td>
</tr>
<tr>
<td>Millivolt 1</td>
<td>ZA 9000-FS1</td>
<td>-26.000...+26.000</td>
<td>mV</td>
<td>U 26</td>
</tr>
<tr>
<td>Millivolt 2</td>
<td>ZA 9000-FS2</td>
<td>-260.00...+260.00</td>
<td>mV</td>
<td>U260</td>
</tr>
<tr>
<td>Volt</td>
<td>ZA 9000-FS3</td>
<td>-0.2600...+2.6000</td>
<td>V</td>
<td>U2.60</td>
</tr>
<tr>
<td>Difference millivolt</td>
<td>ZA 9000-FS0D</td>
<td>-10.000...+55.000</td>
<td>mV</td>
<td>d 55</td>
</tr>
<tr>
<td>Difference millivolt 1</td>
<td>ZA 9000-FS1D</td>
<td>-26.000...+26.000</td>
<td>mV</td>
<td>d 26</td>
</tr>
<tr>
<td>Difference millivolt 2</td>
<td>ZA 9000-FS2D</td>
<td>-260.00...+260.00</td>
<td>mV</td>
<td>d260</td>
</tr>
<tr>
<td>Difference volt*</td>
<td>ZA 9000-FS3D</td>
<td>-0.2600...+2.6000</td>
<td>V</td>
<td>d2.60</td>
</tr>
<tr>
<td>Sensor voltage</td>
<td>any</td>
<td>0.0...20.00</td>
<td>V</td>
<td>UbAt</td>
</tr>
<tr>
<td>Milliamperre</td>
<td>ZA 9601-FS1</td>
<td>0.000...+26.000</td>
<td>mA</td>
<td>I032</td>
</tr>
<tr>
<td>Percent (4 to 20mA)</td>
<td>ZA 9601-FS2</td>
<td>0.00...100.00</td>
<td>%</td>
<td>P420</td>
</tr>
<tr>
<td>Frequency</td>
<td>ZA 9909-AK1</td>
<td>0...32000</td>
<td>Hz</td>
<td>FrEq</td>
</tr>
<tr>
<td>Pulses</td>
<td>ZA 9909-AK2</td>
<td>0...65000</td>
<td>%</td>
<td>PULS</td>
</tr>
<tr>
<td>Digital input</td>
<td>ZA 9000-EK2</td>
<td>0.0...100.0</td>
<td>%</td>
<td>Inp</td>
</tr>
<tr>
<td>Digital interface</td>
<td>ZA 9919-AKxxx</td>
<td>-65000...+65000</td>
<td></td>
<td>diGi</td>
</tr>
<tr>
<td>Snap-on head normal 20</td>
<td>FV A915-S120</td>
<td>0.30...20.00</td>
<td>m/s</td>
<td>S120</td>
</tr>
<tr>
<td>Snap-on head normal 40</td>
<td>FV A915-S140</td>
<td>0.40...40.00</td>
<td>m/s</td>
<td>S140</td>
</tr>
<tr>
<td>Snap-on head micro 20</td>
<td>FV A915-S220</td>
<td>0.50...20.00</td>
<td>m/s</td>
<td>S220</td>
</tr>
<tr>
<td>Snap-on head micro 40</td>
<td>FV A915-S240</td>
<td>0.60...40.00</td>
<td>m/s</td>
<td>S240</td>
</tr>
<tr>
<td>Macro</td>
<td>FV A915-MA1</td>
<td>0.10...20.00</td>
<td>m/s</td>
<td>L420</td>
</tr>
<tr>
<td>Water-Micro</td>
<td>FV A915-WM1</td>
<td>0.00...5.00</td>
<td>m/s</td>
<td>L605</td>
</tr>
<tr>
<td>Relative air humidity, capacitive</td>
<td>FH A646</td>
<td>0.0...100.0</td>
<td>%H</td>
<td>°rH</td>
</tr>
<tr>
<td>Rel. air humidity, capacitive</td>
<td>TC FH A646-C</td>
<td>0.0...100.0</td>
<td>%H</td>
<td>HcrH</td>
</tr>
<tr>
<td>Rel. air humidity, capacitive</td>
<td>TC FH A646-R</td>
<td>0.0...100.0</td>
<td>%H</td>
<td>H rH</td>
</tr>
<tr>
<td>Mixture ratio, capacitive, with PC</td>
<td>FH A646</td>
<td>0.0...500.0</td>
<td>g/k</td>
<td>H AH</td>
</tr>
<tr>
<td>Dew-point temperature, cap.</td>
<td>FH A646</td>
<td>-25.0...100.0</td>
<td>°C</td>
<td>H dt</td>
</tr>
<tr>
<td>Partial vapor pressure, cap.</td>
<td>FH A646</td>
<td>0.0...1050.0</td>
<td>mb</td>
<td>H UP</td>
</tr>
<tr>
<td>Enthalpy, capacitive</td>
<td>FH A646</td>
<td>0.0...400.0</td>
<td>kJ</td>
<td>H En</td>
</tr>
</tbody>
</table>
* Double connectors with differential voltage / differential current (D-B) cannot be used
<table>
<thead>
<tr>
<th>Transducer</th>
<th>Sensor / connector</th>
<th>Measuring range</th>
<th>Units</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function channels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Hi</td>
<td></td>
</tr>
<tr>
<td>Minimum value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Lo</td>
<td></td>
</tr>
<tr>
<td>Aver. value M(t) over time of Mb1</td>
<td>any</td>
<td></td>
<td>A[t]</td>
<td></td>
</tr>
<tr>
<td>Aver. value M(n) of Mb2 to Mb1</td>
<td>any</td>
<td></td>
<td>A[n]</td>
<td></td>
</tr>
<tr>
<td>Sum S(n) of Mb2 to Mb1</td>
<td>any</td>
<td></td>
<td>S[n]</td>
<td></td>
</tr>
<tr>
<td>Total pulses S(t) of Mb1</td>
<td>ZA 9909-AK2</td>
<td>0... 65000</td>
<td>S[t]</td>
<td></td>
</tr>
<tr>
<td>Pulses / print cycle of Mb1</td>
<td>ZA 9909-AK2</td>
<td>0... 65000</td>
<td>S[P]</td>
<td></td>
</tr>
<tr>
<td>Alarm value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Alrn</td>
<td></td>
</tr>
<tr>
<td>Measured value of Mb1</td>
<td>any</td>
<td></td>
<td>MEAS</td>
<td></td>
</tr>
<tr>
<td>Cold junction temperature</td>
<td>any</td>
<td></td>
<td>°C</td>
<td>CJ</td>
</tr>
<tr>
<td>Number of aver. values of Mb1</td>
<td>any</td>
<td></td>
<td>n(t)</td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>any</td>
<td></td>
<td></td>
<td>s tinE</td>
</tr>
</tbody>
</table>

TC=Temperature compensation PC=Pressure compensation

10.1.3 Double display
On all double sensors incorporating a temperature sensor on the 1st channel the temperature value can at the same time be displayed in the function field.

Select 2nd channel

Activate temperature display **Press and hold down** MAX

Return to channel display **Press and hold down** MAX

10.2 Peak value memory
From the measured values acquired for each measuring point the highest and the lowest values are continuously recorded. To display these high/low peak values first the desired channel must be set (see Section 7.1) and then the MAX or MIN key must be pressed. As a check the display also includes the associated symbol.

To display the maximum value press key : MAX

To display the minimum value press key : MIN

To delete the maximum value press and hold down key : MAX

To delete the minimum value press and hold down key : MIN

To return to the measuring point display press key : M▲

As soon as you clear the memory, the current measured value will appear (because measuring is continuous).
10. Measuring operations

10.3 Measured value memory
On the ALMEMO® 2450-1 any measured value can be saved. To save the measured value press key: MEM.

The value most recently saved then appears in the function field preceded by the symbol ‘M’. To return to the channel display press key: MA.

10.4 Relative measuring
One very useful function is to zero the measured value at certain locations or at certain times as a reference value in order then to observe only the subsequent deviations. This function is independent of the locking status and does not modify the programming parameters in the connector.

To zero-set the measured value press key: CLR.
To display relative measuring press arrow: REL.
To return to normal measured value press and hold down key: CLR.

Setting to zero automatically deletes the maximum and minimum values for this channel. The MAX, MIN, and MEM functions are thus also available for relative measurement.

11. OUTPUTS
The following interfaces corresponding accessories or options either are necessary. (see 14.2)

11.1 Interfaces
The ALMEMO® 2450-1 version with the interface can not only be completely programmed via the computer thus enabling the user to read out all acquired data (see Manual Ch 6) but also be networked together very easily thus enabling the user to centrally acquire and record measured values from several measuring instruments - even if these are located far apart (see Manual 5.3). The data cables required for this purpose (see Manual 5.2) are plugged into socket A1. The baud rate for all data cables is is programmed on leaving the factory to 9600 baud; this setting should not be altered.

As an alternative option I is available with an integrated RS485 interface. Via 6-pin ALMEMO® clamp connector ZA1000-FSV these devices can be connected directly either to network distributor ZA5099-NVL or to bus driver
ZA5099-AS. The transmit and receive lines must be crossed once-only. Up to 32 other devices can then be wired in parallel with line lengths up to 1 km. As with all networked devices each one must be set to a different device address; (see 12.1).

The power supply also takes place with 12V DC over the bus.

11.2 Analog outputs

An analog output cable ZA 1601-RK (0 to 2 V) can be connected at socket(s) A2 and / or A1 (3) without electrical isolation; (see Manual 5.1.1). In ‘Device configuration’ the functions ‘ACH1 A2‘ or ‘ACH2 A1‘ should now appear (see Chapter 12); here the reference channels for the corresponding analog outputs and the scaling requirements can be entered.

Or, alternatively, there are variants 2490-xR02 with 2 integrated electrically isolated analog outputs (see Section 15.2); these can be configured as 0 to 10 V, 0 to 20 mA, or 4 to 20 mA. These appear in ‘Device configuration’ as ‘ACH6 PO’ and ‘ACH7 PO’ because they occupy ports 6 and 7 of socket P0 (2) (port addresses 06 and 07). These two are connected to the evaluating unit via a clamp connector as follows :

Which measuring channel is output via which analog output can be configured via the display (see 12.2) or via the interface (see Manual 6.10.7). To achieve the best possible resolution the partial measuring range used can be spread over the full output range (0 to 10 V or 0/4 to 20 mA); (see 12.2).

On devices with option R02 (integrated analog outputs) and option U (electrically isolated power supply) battery operation is no longer possible.
12. DEVICE CONFIGURATION

On the ALMEMO® 2450-1 measuring instrument a number of parameters can be configured. To do so when switching ON press and hold down key MEM. The function field should then show an abbreviation for the parameter and the main field should show the value currently set.

To select from all possible parameters, if any are available, press keys:

Device address: see 12.1

Locking the CLR key: see 12.4

Reference channel and scaling for
 1st analog output (at socket A2): see 12.2

Reference channel and scaling for
 Analog output P0-6 (option): see 12.2

Reference channel and scaling for
 Analog output P0-7 (option): see 12.2

Automatic switch OFF time in minutes: see 12.3

To enter a value first press:

 starts flashing.

 To modify the value press keys:

 To delete parameters press:

 Entry is completed by again pressing key:

To terminate configuration at any time press key:

12.1 Device address and networking

To communicate with networked devices it is absolutely indispensable that each device should have its own baud rate setting and its own dedicated address; this is because only one device should respond per command. Before starting network operation ensure therefore that all the measuring instruments involved are assigned different device numbers. This is the purpose of the afore-mentioned device address parameter.
12.2 Analog output

By default the 1st analog output (either cable at A2 or internal P0-6) is used to output the measured value for the selected measuring point and the 2nd analog output (internal P0-7) is used to output the measured value for the 1st channel of the selected sensor; (see 11.2, Manual 6.10.7).

Selecting the reference channel

However, which channel is in fact to be output via which analog output can also be stipulated by the user. To do this the parameters ‘ACh1’, ‘ACh6’, or ‘ACh7’ must be configured as previously described.

Scaling the analog output

The output signal from each analog output variation (0 to 2 V, 0 to 10 V, 0 to 20 mA, 4 to 20 mA) can be set for each sensor to any partial range (e.g. 4 to 20 mA for -30.0 to +120.0 °C). For the previously specified reference channel, the values for analog output start and analog output end plus analog output type (0 to 20 mA or 4 to 20 mA) can all be programmed.

First the analog output must be selected and then the **reference channel** can be programmed (e.g. M01); (see above):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output start</td>
<td>(minimum value in measuring range)</td>
<td>M1 AS</td>
</tr>
<tr>
<td>Analog output end</td>
<td>(maximum value in measuring range)</td>
<td>M1 AE</td>
</tr>
<tr>
<td>Analog output type</td>
<td></td>
<td>M1 mA</td>
</tr>
</tbody>
</table>

To return to the reference channel press key:

To enter a value first press: **ON** and the 1st digit starts flashing.

Each digit can be changed by pressing keys: **M▲** or **M▼**.

To use negative values below zero press: **M▼**

To delete parameters press: **CLR**

To select the next digit, and terminate entry press: **ON**

To cancel or terminate configuration press: **MEM**
12. Device configuration

12.3 Switching OFF automatically
In menu item ‘A0FF’ the device can be programmed to switch OFF automatically if no key is touched for a certain settable number of minutes; this will help save the batteries. This automatic device switch OFF will not take effect if the setting is ‘- -’ or if a mains adapter or interface cable is connected. If the device is powered from an external supply manual switch OFF can be prevented by selecting the setting ‘noOFF’. To switch OFF in this case the external power supply would have to be unplugged.

12.4 Device locking
The measured value in the main field of the display can be manipulated by pressing key [CLR] and setting it to zero. This function can be evaluated in different ways or even switched off in cases where there is a risk of accidentally activating relative measuring by zero-setting the measured value.

loc parameter:
- 0 The offset is saved in RAM, base or zero-point - depending on locking
- 1 The offset is saved in RAM only.
- 2 Relative measuring is locked

13. TROUBLE-SHOOTING
The ALMEMO® 2450-1 measuring instrument can be configured and programmed in many versatile ways. It is suitable for connecting a wide variety of different sensors, additional measuring instruments, alarm signaling devices, and peripheral equipment. Given these numerous possibilities the device may in certain circumstances not behave quite as expected. The cause of such unexpected behavior is only very rarely a device defect; more usually it is incorrect operation by the user, an invalid setting, or unsuitable cabling. In such event try to pinpoint and clear the problem with the aid of the following tests.

Error: No display, display malfunction, keys do not react
Remedy: Check the power supply; replace the batteries; switch off and then on again; if necessary re-initialize (see 7.5).

Error: Measured values are incorrect.
Remedy: Check all the channel programming very carefully, especially the base value and zero-point (sensor programming and special functions menu).

Error: Fluctuating measured values or the system hangs in mid-operation.
Remedy: Check the cabling for any inadmissible electrical connections, Unplug any suspicious sensors. Connect hand-held sensors in air or phantoms (for thermocouples short-circuit AB) and check. Connect the sensors again one at a time and check successively. If a fault persists for any one connection, then check all wiring; if
Trouble-shooting

necessary, insulate the sensor and eliminate interference by using shielded or twisted wiring.

Error: ‘CALEr’ is displayed when the device is switched on.
Remedy: The calibration of a measuring range may have become misadjusted. The device must be recalibrated at the factory.

Error: Data transmission via the interface does not function.
Remedy: Check interface module, connections, and settings. Are both devices set to the same baud rate and transmission mode?
Is the correct COM interface on the computer being addressed?
To check the data flow and the handshake lines a small interface tester with LEDs comes in very handy; (in ready-to-operate status the data lines TXD, RXD carry negative potential of approx. -9V and the LEDs light up green, whereas the handshake lines DSR, DTR, RTS, CTS carry approx. +9V positive voltage and the LEDs light up red. For the duration of data transmission the data LEDs should flash red.
Check data transmission by means of a terminal (AMR-Control, WIN-Control, WINDOWS-Terminal).
Address the device using its assigned device number ‘Gxy’ (see Manual 6.2.1).
Enter <ctrl Q> for XON, if the device is in the XOFF status.
Check the programming by means of ‘P15’ (see Manual 6.2.3).
Test the transmit line by selecting a measuring point using command ‘Mxx’ and check in the display.

Error: Data transmission in the network does not function.
Remedy: Check to ensure that all devices are set to different addresses.
Address all devices individually via the terminal using command ‘Gxy’.
Addressed device is OK if at least ‘y CR LF’ is returned as echo.
If transmission is still not possible, unplug the networked devices.
Check all devices individually on the data cable to the computer; (see above).
Check the wiring for short-circuit or crossed wires.
Are all network distributors supplied with power?
Network the devices again one at a time and check successively.

If, after performing the above-listed checks and remedial steps, the device still fails to behave as described in the operating instructions, it must be returned to our factory in Holzkirchen, accompanied by an explanatory note, error description, and if available test printouts. With the AMR-Control software you can print out screen-shots with the relevant programming and save and / or print out a comprehensive ‘Function test’ in the device list or terminal operation.
14. DECLARATION OF CONFORMITY

Ahlborn Mess- und Regelungstechnik GmbH declares herewith that measuring instrument ALMEMO® 2450-1 carries the CE label and complies in full with the requirements of EU directives relating to low voltage and to electromagnetic compatibility (EMC) (89/336/EWG).

The following standards have been applied in evaluating the product.

IEC 61000-6-1:1997
IEC 61000-6-3:1996
IEC 61000-4-4: 1995+A1:2000 2kV

If a product is modified in any manner not agreed with us in advance, this declaration becomes void.

When using the sensor with an extension care must be taken to ensure that wiring is not laid alongside or close to high-voltage power cables and that it is, if necessary, properly shielded so as to prevent spurious interference being induced in the system.

The following advisory notes must be observed when operating the device:

Using the device in strong electromagnetic fields may aggravate measuring errors (<50 µV at 3 V/m and 1.5 meters thermocouple sensor). After exposure to such irradiation ceases, the device will again operate within its technical specifications.

15. APPENDIX

15.1 Technical data

Measuring inputs:
1 ALMEMO® socket suitable for ALMEMO® connectors

Measuring channels:
Maximum 3 additional channels for double sensors and function channels

A/D converter:
Delta - sigma, 16-bit, 2.5 mops, adjustable 1 to 100

Meas. range:
See Measuring range list Chap. 10.1.2 on page 20

Some measuring ranges differ from the standard ALMEMO® ranges

Sensor power supply:
9 volts, max. 150 mA (with OA2450-U only 70 mA, 12V)

Outputs:
2 ALMEMO® sockets for output modules
Option OA 2450-I
RS-485 interface, electr. isol., integrated, socket DC,
Signals:
RX+, RX-, TX+, TX-, line, maximum 1 km

Analog output, integrated:
Electrically isolated, socket P0

Variants:
2450-1R02, 2450-2R02

Outputs, options:
0.00 V ...+10.0 V 0.5 mV/digit Load > 100kΩ
0.0 mA ...+20.0 mA 1 µA/digit Load < 500Ω

Accuracy:
± 0.1% of final value
Temperature drift: 10 ppm / K
Time constant: 100 us

Standard equipment:

LCD: Measured value: 5x 7-segment 15 mm,
2x 16-segment 9 mm
Function: 4½ x 7-segment 9 mm, 9 symbols

Operation: 7 silicone keys
Memory: 1 Measuring value on the RAM
Date and time-of-day: Software clock, buffered by battery supply

Power supply:

Batteries: 3 AA alkaline batteries
Current consumption: approx. 10 mA (without input and output modules)
With double analog output: approx. 90 mA + 3.5 x IOUT

External:

Clamp connectors: ZA1000-FSV 10 to 30 V DC
Mains adapter: ZA1312-NA1 230 VAC to 12 VDC, 0.2 A
Adapter cable, electr. isol.: ZA2690-UK 10...30 VDC to 12 VDC, 0.25 A
Option U electr. isol.: OA2490-U 10...30 VDC , 0.1 A

Housing:

(LxWxH) 127 x 83 x 42 mm
ABS (acrylonitrile butadiene styrene), weight: approx. 260 g

Suitable conditions

Operating temperature: -10 to +50 °C
(storage temperature: -20 to +60 °C)
Ambient relative humidity: 10 to 90 % rH (non-condensing)

15.2 Product overview

Universal measuring instrument ALMEMO 2450-1

Order no.
1 measuring input, 2-row LCD, 7 keys, battery supply
3 ALMEMO output sockets, A1, A2 for cables RS232, USB,
Analog, Ethernet, trigger, relay, DC socket for mains adapter
Same but with internal double analog output 0 to 10 V / 0 to 20 mA
Connection at socket P0, clamp connector

Options

Measuring ranges for temperature display of 10 refrigerants: SB 0000-R
Power supply, electr. isolated, 10 to 30 VDC, 80 mA, clamp connectors: OA 2450-U
RS485 interface, integrated, including option U, socket DC, clamp connectors: OA 2490-I

Accessories

Top hat rail mounting: ZB 2450-HS
Mains adapter with ALMEMO® connector, 12 volts, 1 A: ZA 1312-NA8
Rubberized impact protection, gray ZB 2490-GS2
DC adapter cable, 10 to 30 V DC, 12 V / 0.25 A, electrically isolated ZA 2690-UK
ALMEMO® clamp connector 10 to 30 V DC ZA 1000-FSV
ALMEMO® data cable, with USB interface, el. isol., maximum 115.2 KB ZA 1919-DKU
ALMEMO® data cable, with V24-interface, el. isol., maximum 115.2 KB ZA 1909-DK5
ALMEMO® data cable, with Ethernet interface, el. isol., max. 115.2 KB ZA 1945-DK
ALMEMO® network cable, electrically isolated, maximum 115.2 KB ZA 1999-NK5
ALMEMO® recording cable, -1.25 to 2.00 V ZA 1601-RK
ALMEMO® V6 input / output cable with 2 semiconductor relays, trigger input ZA 1006-EAK

15.3 Index
Accessories 15.2 30
additional channels 8.2 15
AMR-Control 5.1.3 13
analog output 11.2 23
Analog output 12.2 25
analog output end 12.2 25
analog output start 12.2 25
analog output type 12.2 25
Battery operation 7.1 14
clamp connector 11.2 23
Connecting the transducers 8 15
Data buffering 7.6 15
Data logging 6 13
Declaration of conformity 14 28
Device address 12.1 24
Device configuration 12 24
Device locking 12.4 26
Display 9 17
Double display 10.1.3 21
External DC voltage supply 7.3 14
faults 9.1 18
Function channels 10.1.2 21
Function field 9.1 17
Function test 13 27
Functions 5.1 9
Housing 15.1 29
Initial commissioning 6 13
Interfaces 11.1 22
Introduction 5 8
keypad 9 17
Keypad 9.2 18
<table>
<thead>
<tr>
<th>Main field</th>
<th>9.1</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains operation</td>
<td>7.2</td>
<td>14</td>
</tr>
<tr>
<td>maximum value</td>
<td>10.2</td>
<td>21</td>
</tr>
<tr>
<td>Measured value</td>
<td>10.1</td>
<td>19</td>
</tr>
<tr>
<td>Measured value memory</td>
<td>10.3</td>
<td>22</td>
</tr>
<tr>
<td>Measuring inputs</td>
<td>8.2</td>
<td>15</td>
</tr>
<tr>
<td>Measuring inputs</td>
<td>15.1</td>
<td>28</td>
</tr>
<tr>
<td>Measuring operations</td>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>Measuring ranges</td>
<td>10.1.2</td>
<td>20</td>
</tr>
<tr>
<td>minimum value</td>
<td>10.2</td>
<td>21</td>
</tr>
<tr>
<td>networking</td>
<td>12.1</td>
<td>24</td>
</tr>
<tr>
<td>ON OFF</td>
<td>9.2</td>
<td>18f.</td>
</tr>
<tr>
<td>operating states</td>
<td>9.1</td>
<td>18</td>
</tr>
<tr>
<td>Options</td>
<td>15.2</td>
<td>29</td>
</tr>
<tr>
<td>Order no.</td>
<td>15.2</td>
<td>29</td>
</tr>
<tr>
<td>Outputs</td>
<td>11</td>
<td>22</td>
</tr>
<tr>
<td>Outputs</td>
<td>15.1</td>
<td>29</td>
</tr>
<tr>
<td>Peak value memory</td>
<td>10.2</td>
<td>21</td>
</tr>
<tr>
<td>port addresses</td>
<td>11.2</td>
<td>23</td>
</tr>
<tr>
<td>Potential separation</td>
<td>8.3</td>
<td>16</td>
</tr>
<tr>
<td>Power supply</td>
<td>15.1</td>
<td>14, 29</td>
</tr>
<tr>
<td>Process control</td>
<td>5.1.3</td>
<td>12</td>
</tr>
<tr>
<td>Product overview</td>
<td>15.2</td>
<td>29</td>
</tr>
<tr>
<td>reference channel</td>
<td>12.2</td>
<td>25</td>
</tr>
<tr>
<td>reference value</td>
<td>10.4</td>
<td>22</td>
</tr>
<tr>
<td>reinitialization</td>
<td>7.5</td>
<td>14</td>
</tr>
<tr>
<td>Relative measuring</td>
<td>10.4</td>
<td>22</td>
</tr>
<tr>
<td>RS485 interface</td>
<td>11.1</td>
<td>22</td>
</tr>
<tr>
<td>Safety instructions</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Scaling the analog output</td>
<td>12.2</td>
<td>25</td>
</tr>
<tr>
<td>Scope of delivery</td>
<td>3.2</td>
<td>6</td>
</tr>
<tr>
<td>Selecting a measuring point</td>
<td>10.1.1</td>
<td>19</td>
</tr>
<tr>
<td>Sensor programming</td>
<td>5.1.1</td>
<td>9</td>
</tr>
<tr>
<td>Sensor supply</td>
<td>7.4</td>
<td>14</td>
</tr>
<tr>
<td>Software</td>
<td>5.1.3</td>
<td>13</td>
</tr>
<tr>
<td>Standard equipment</td>
<td>15.1</td>
<td>29</td>
</tr>
<tr>
<td>Suitable conditions</td>
<td>15.1</td>
<td>29</td>
</tr>
<tr>
<td>supply voltage monitoring</td>
<td>7.1</td>
<td>14</td>
</tr>
<tr>
<td>Switching OFF automatically</td>
<td>12.3</td>
<td>26</td>
</tr>
<tr>
<td>Switching ON / OFF</td>
<td>7.5</td>
<td>14</td>
</tr>
<tr>
<td>Technical data</td>
<td>15.1</td>
<td>28</td>
</tr>
<tr>
<td>Temperature compensation</td>
<td>10.1.2</td>
<td>21</td>
</tr>
<tr>
<td>Terminal - Open log</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>
the measured value
To switch OFF
To switch ON
Transducers
Trouble-shooting
Warranty
Waste disposal
WIN-Control

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>the measured value</td>
<td>10.4</td>
<td>22</td>
</tr>
<tr>
<td>To switch OFF</td>
<td>9.2</td>
<td>18</td>
</tr>
<tr>
<td>To switch ON</td>
<td>9.2</td>
<td>18</td>
</tr>
<tr>
<td>Transducers</td>
<td>8.1</td>
<td>15</td>
</tr>
<tr>
<td>Trouble-shooting</td>
<td>13</td>
<td>26</td>
</tr>
<tr>
<td>Warranty</td>
<td>3.1</td>
<td>5</td>
</tr>
<tr>
<td>Waste disposal</td>
<td>3.3</td>
<td>6</td>
</tr>
<tr>
<td>WIN-Control</td>
<td>5.1.3</td>
<td>13</td>
</tr>
</tbody>
</table>

15.4 Your contact

AHLBORN Mess- und Regelungstechnik GmbH
Eichenfeldstraße 1
83607 Holzkirchen
Germany

internet: http://www.ahlborn.com
e-mail: amr@ahlborn.com

We take every possible care but the risk of inaccuracy can never be altogether excluded.
We reserve the right to make technical changes without advance notice.