Universal measuring instrument
ALMEMO® 2450-1L
1. OPERATING CONTROLS

(1) Measuring inputs M0
 M0 for a wide range of sensors
 M10 to M30 3 additional channels

(2) LCD
 Function field
 (a) Function
 (b) Measuring point, 2nd meas. value
 (c) Units for 2nd measured value
 Main field
 (c) Units for 1st measured value
 (e) 1st measured value
 (f) Operating states:
 LOBAT Battery voltage <3.8 V
 REL Relative measuring

(3) Operating keys
 ON OFF Switch the device on
 To switch device OFF, press and hold down
 M▲, M▼ Meas. point selection
 MAX, MIN Max. / min. value
 cancel: press and hold down
 MEM Measured value memory
 CLR Relative measuring
 Adjust sensor,
 cancel: press and hold down

 To switch ON with press keys:
 CLR Reinitialization
 MEM Device configuration
 M▲ Softwareversion

Rear of device

(4) Battery compartment
 3 AA alkaline-manganese batteries
2. CONTENTS

1. OPERATING CONTROLS ... 2

3. GENERAL .. 5
 3.1 Warranty ... 5
 3.2 Scope of delivery ... 6
 3.3 Waste disposal .. 6

4. SAFETY INSTRUCTIONS ... 7
 4.1 Special notes on use ... 8
 4.2 Handling batteries / rechargeable batteries correctly 8

5. INTRODUCTION .. 9
 5.1 Functions.. 9
 5.1.1 Sensor programming ... 9
 5.1.2 Measuring operations ... 10

6. INITIAL COMMISSIONING ... 11

7. POWER SUPPLY .. 11
 7.1 Battery operation and supply voltage monitoring 11
 7.2 Sensor supply ... 11
 7.3 Switching ON / OFF, reinitialization 12
 7.4 Data buffering ... 12

8. CONNECTING THE TRANSDUCERS .. 12
 8.1 Transducers ... 12
 8.2 Measuring inputs and additional channels 13

9. DISPLAY AND KEYPAD ... 14
 9.1 Display .. 14
 9.2 Keypad .. 15

10. MEASURING OPERATIONS .. 16
 10.1 Measured value ... 16
 10.1.1 Selecting a measuring point 16
 10.1.2 Measuring ranges ... 17
 10.1.3 Double display .. 18
 10.2 Peak value memory .. 18
 10.3 Measured value memory .. 18
 10.4 Relative measuring .. 19

11. DEVICE CONFIGURATION ... 19
 11.1 Automatic switch OFF ... 20
 11.2 Device locking ... 20

12. TROUBLE-SHOOTING ... 20

13. DECLARATION OF CONFORMITY ... 21
14. APPENDIX ..22
 14.1 Technical data ..22
 14.2 Product overview ...22
 14.3 Index ...23
 14.4 Your contact ..24
3. GENERAL

Congratulations on your purchase of this new and innovative ALMEMO® measuring instrument. Thanks to the patented ALMEMO® connector the device configures itself automatically; its operation should be fairly straightforward. The device can, however, be used with such a wide range of sensors and peripherals and offers many different special functions. You are advised therefore to properly familiarize yourself with the way the sensors function and with the device's numerous possibilities and take the time to carefully read these operating instructions and the appropriate sections in the ALMEMO® Manual. This is absolutely necessary to avoid operating and measuring errors and to prevent damage to the device. To help you find the answers to your questions quickly and easily there is a comprehensive index at the end both of these instructions and of the Manual.

3.1 Warranty

Each and every device, before leaving our factory, undergoes numerous quality tests. We provide a guarantee, lasting two years from delivery date, that your device will function trouble-free. Before you send your device to us, please observe the advisory notes in Chapter 12. Trouble-shooting In the unlikely event that the device proves defective and you need to return it please wherever possible use the original packaging material for dispatch and enclose a clear and informative description of the fault and of the conditions in which it occurs.

This guarantee will not apply in the following cases:

- The customer attempts any form of unauthorized tampering or alteration inside the device.
- The device is used in environments and conditions for which it is not suited.
- The device is used with unsuitable power supply equipment and / or peripherals.
- The device is used for any purpose other than that for which it is intended.
- The device is damaged by electrostatic discharge or lightning.
- The user fails to observe and comply with the operating instructions.

The manufacturer reserves the right to change the product's characteristics in the light of technical progress or to benefit from the introduction of new components.
3. General

3.2 Scope of delivery
When you unpack the device check carefully for any signs of transport damage and ensure that delivery is complete.

- Measuring instrument ALMEMO® 2450-1L with 3 AA alkaline batteries
- These operating instructions
- ALMEMO® Manual
- CD with the AMR-Control software and various useful accessories

In the event of transport damage please retain the packaging material and inform your supplier immediately.

3.3 Waste disposal

The pictogram showing a waste bin crossed through means that the product is subject to European Union regulations on segregated waste disposal. This applies both to the product itself and to any accessories marked with the same symbol. Disposal of any such item as unsorted domestic waste is strictly forbidden.

- Please dispose of all packaging materials according to the applicable national waste management regulations.
- Please dispose of cardboard boxes, protective plastic packaging materials, and all preservative substances separately and in the proper manner.
- The disposal of the device itself (also of device parts, accessories, and consumables) is subject to the applicable national and local waste management regulations and to the environmental protection legislation in force in the country of use.
- Please dispose of all waste in the proper manner; this applies in particular to all parts and substances that constitute a hazard for the environment. This includes inter alia plastics, batteries, and rechargeable battery packs.
- When disposing of goods, please wherever possible use the original packaging materials.
4. SAFETY INSTRUCTIONS

DANGER Danger to life and limb, risk of damage to equipment

Read the instructions carefully before starting to operate the device.

Please ensure that you comply with all general safety advice and the special safety instructions included in other chapters.

Such risks may occur in the following circumstances:

- Failure to heed the operating instructions and all the safety notes these contain
- Any form of unauthorized tampering or alteration inside the device
- Use of the device in environments or conditions for which it is not suited
- Use of the device with an unsuitable power supply and/or in conjunction with unsuitable peripheral equipment
- Use of the device for any purpose other than that for which it is intended
- Damage caused by electrostatic discharge or lightning.

DANGER Risk of fatal injury caused by dangerously high voltage

Such risks may occur in the following circumstances:

- Use of the device with an unsuitable power supply and/or in conjunction with unsuitable peripheral equipment
- Damage caused by electrostatic discharge or lightning
- Do not run sensor lines in the vicinity of high-voltage power cables.
- Before you touch any sensor lines, ensure that all static electricity has been discharged.
4. Safety instructions

DANGER Warning - explosive atmospheres or substances

In the vicinity of various fuels or chemicals there is a risk of explosion.

Do not use the device in the close vicinity of blasting work or filling stations!

4.1 Special notes on use

• If the device is brought into the work-room from a cold environment there is a risk that condensation might form on the electronics. In measuring operations involving thermocouples pronounced changes in temperature may cause substantial measuring errors. You are advised therefore to wait until the device has adjusted to the ambient temperature before starting to use it.

• Before using the mains adapter make sure that the mains voltage is suitable.

• Be sure to observe the maximum load capacity of the sensor power supply.

• Sensors with their own integrated power supply are not electrically isolated from one another

4.2 Handling batteries / rechargeable batteries correctly

When inserting batteries / rechargeable batteries ensure that these are correctly polarized.

If the device will probably not be needed for a relatively long period of time or if the batteries are empty, remove the batteries; this will prevent battery acid leaking onto the device and damaging it.

Rechargeable batteries should be recharged as and when necessary.

You should never attempt to recharge an ordinary (non-rechargeable) battery; it may explode!

Batteries / rechargeable batteries must never be short-circuited or thrown onto the fire.

Batteries / rechargeable batteries are special waste and must not be discarded together with normal domestic waste.
5. INTRODUCTION

The ALMEMO® 2450-1L is a new member in our family of unique measuring devices - all equipped with Ahlborn's patented ALMEMO® connector system. The intelligent ALMEMO® connector offers decisive advantages when connecting sensors and peripherals because all parameters are stored in an EEPROM located on the connector itself; repeat programming is thus no longer necessary.

All sensors can be connected to all ALMEMO® measuring instruments in the same way. Programming and functioning are identical for all units. The following points apply to all devices in the ALMEMO® measuring system; these are described in detail in the ALMEMO® Manual which is included in delivery with each device.

Detailed explanation of the ALMEMO® system (Manual Ch 1)
Overview of the device functions and measuring ranges (Manual Ch 2)
Basic principles, operation, and technical data for all sensors (Manual Ch 3)
Options for connecting your own existing sensors (Manual Ch 4)

The operating instructions you are now reading cover only those features and controls that are specific to this device. Many sections therefore also refer to the more detailed description in the Manual; (see Manual, Section xxx).

5.1 Functions

The ALMEMO® 2450-1L measuring instrument has just one measuring input suitable for most ALMEMO® sensors - with the single exception of resistance sensors. The measuring possibilities are numerous; there are 4 channels in the sensor connectors with over 40 measuring ranges. For operation purposes the device incorporates a large LCD display and a keypad.

5.1.1 Sensor programming

The measuring channels are programmed, completely and automatically, by the ALMEMO® connectors. The user can supplement or modify this programming; this applies to the other devices only. However, this device also behave according to all the programmed parameters.

Measuring ranges

Appropriate measuring ranges are available for all sensors with a non-linear characteristic, e.g. 7 thermocouple types, NTC probes, and flow transducers (rotating vanes, thermoanemometers). For humidity sensors additional function channels are available for calculating humidity variables such as dew point, mixture ratio, vapor pressure, and enthalpy. Measured values from other sensors can also be acquired using the voltage and current ranges with individual scaling in the connector. Existing sensors can also be used - so long as the appropriate ALMEMO® connector is connected via its screw terminals. For digital input signals, frequencies, and pulses, adapter connectors are available with an integrated microcontroller. It is thus possible to connect numerous sensor...
types to any ALMEMO® measuring instrument and to change sensors without the need for any extra settings.

Units
The 2-character units display can be adapted for each measuring channel so that both the display and the printout always indicate the correct units, e.g. when a transmitter is connected. Conversion between °C (Centigrade) and °F (Fahrenheit) is performed automatically.

Measured value designation
Each sensor is identified by means of a 10-character alphanumeric name. This name is entered via the interface and will appear in the printout or on the computer display.

Correction of measured values
The measured value on each measuring channel can be corrected both in terms of zero-point and gain; this means that even sensors usually requiring initial adjustment (e.g. expansion, force) can be freely interchanged. Sensors with multi-point calibration can also be connected; (see Manual Section 6.3.13).

Scaling
The corrected measured value on each measuring channel can also be further scaled in terms of zero-point and gain - using the base value and factor. The decimal point position can be set by means of the exponent function.

Sensor locking
All sensor data stored in the connector EEPROM can be protected by means of a graduated locking function against undesired access.

5.1.2 Measuring operations
A total of up to 4 measuring channels are available for 1 transducer; i.e. it is also possible to evaluate double sensors, individually scaled sensors, and sensors with function channels. You can move forwards or backwards from one measuring channel to the next using the keypad. The selected measuring point is by default assigned preferred status and is scanned at half the measuring rate; all other active channels are also scanned but in the background (semi-continuous mode). The data is output on the display.

Measured values
The measured value for the selected measuring point is shown continuously with autozero and, as and when necessary, with measured value correction. With most sensors, sensor breakage is detected automatically (except for connectors with shunt, dividers, or additional electronics).

Measuring functions
With some sensors, to achieve optimal measured value acquisition, certain special measuring functions are required. These include e.g. cold junction compensation for thermocouples and temperature and atmospheric pressure compensation for certain humidity variables.
Maximum and minimum values
For each measuring operation the maximum value and minimum value are acquired and saved to memory. These values can then be displayed, output, or deleted from memory.

Measured value memory
A measured value in the display can be saved by simply pressing a key.

6. INITIAL COMMISSIONING
1. Connect sensor to socket M0 (1); see 8.
2. Ensure that the power supply is provided by 3 AA batteries;
3. To switch ON press key ON (3); see 7.3
4. Select measuring channels by pressing key M (3), read out measured values (5e); see 10.1.1
5. Save the measured value by pressing key MEM (3); see 10.3
6. Relative measuring to a reference value by pressing key CLR (3)
 Revert to normal measured value by pressing and holding down key CLR
7. Evaluating a measuring operation
 Call up maximum / minimum values by pressing keys MAX / MIN (3)
 To delete max. / min. value(s) press and hold down key MAX or MIN see 10.2

7. POWER SUPPLY
Power can be supplied to the measuring instrument with 3 AA alkaline batteries (included in delivery)

7.1 Battery operation and supply voltage monitoring
Power is supplied to the measuring instrument as delivered by 3 AA batteries. At a current consumption of approx. 10 mA the operating time will be approx. 250 hours. The current operating voltage is displayed each time the device is switched on; this gives you a basis for estimating the remaining operating time. When the remaining battery capacity drops to approx. 10 percent, the LO-BAT arrow will appear in the display. If the batteries are completely discharged the device will switch off. To replace old batteries first unscrew the battery compartment cover (7) on the rear of the device.

7.2 Sensor supply
At the terminals + (plus) and – (minus) in the ALMEMO® connector there is a 9-volt sensor supply voltage available (maximum 150 mA) (self-healing fuse, 500 mA). Other voltages (12, 15, or 24 V or references for a potentiometer and strain gauge) can be obtained using special connectors; (see Manual 4.2.5 and 4.2.6).
7. Power supply

7.3 Switching ON / OFF, reinitialization
To switch the device ON briefly press and release the key \texttt{ON OFF} (3) in the middle of the keypad; to switch the device, OFF press and hold down the key \texttt{ON OFF}. After the device is switched off all saved values and settings are retained intact; (see 7.4).

If interference (e.g. electrostatic) or a malfunction (e.g. battery failure) causes the device to behave abnormally, the device can be reinitialized. To activate \texttt{RESET} press and hold down the key \texttt{CLR} when switching on. This will restore all settings to the factory default status. Only the programming of the sensors in the ALMEMO® connectors remains unaffected.

7.4 Data buffering
The sensor's programming is stored in the EEPROM on the sensor connector and the device's calibration and programmed parameters are stored in the EEPROM on the instrument itself, both on a fail-safe basis.

8. CONNECTING THE TRANSDUCERS
Only certain ALMEMO® sensors can be connected to ALMEMO® input socket M0 (1), namely those programmed with measuring ranges as per Ch 10.1.2. Attempting to connect any other sensor here will trigger an error message. To connect your own existing sensors you simply need the appropriate ALMEMO® connector.

8.1 Transducers
The ALMEMO® Manual includes detailed descriptions of the ALMEMO® range of sensors (see Manual Ch 3) and instructions for connecting your own existing sensors to ALMEMO® instruments (see Manual Ch 4). All suitable sensors with an ALMEMO® connector (see above) have the measuring range and units already programmed and can thus be connected to the input socket without further adjustment. A mechanical coding system ensures that sensors and output modules can only be connected to the correct sockets. All ALMEMO® connectors incorporate two snap-lock levers; these snap into position as soon as the connector is inserted into the socket, thus preventing unintended disconnection if the cable is accidentally pulled. To withdraw the connector, both these levers must be pressed in at the sides.

For the ALMEMO® 2450-1L version with the optional seal new specially designed sensors are available with spray-coated ALMEMO® connectors incorporating a double sealing lip to protect the socket unit against the effects of splashing water. For any unused sockets protective stoppers are available.
8.2 Measuring inputs and additional channels

The ALMEMO® 2450-1L measuring instrument has one input socket (1) to which initially measuring channel M0 is assigned. ALMEMO® sensors can, however, if necessary, provide up to four channels. The additional channels can be used in particular for humidity sensors with four measuring variables (temperature / humidity / dew point / mixture ratio) or for function channels. Each sensor can if necessary be programmed with several measuring ranges or scaling settings; and two or three sensors, if pin assignment so permits, can be combined in a single connector (e.g. rH / NTC, mV / V, mA / V, etc.). The additional measuring channel numbers per connector go up in steps of 10 (e.g. the first sensor has channels M0, M10, M20, M30).

Double connectors with 2 x differential voltage / differential current (input D - B) are not possible.

On the measuring instrument this gives the following channel assignment:

![Diagram of sensor channels]

4. chan. 30
3. chan. 20
2. chan. 10
1. chan. 00

M0 P0 A2 A1 DC

Sensors combined within one connector and sensors with their own power supply are electrically interconnected and must therefore be operated in isolation. The voltage at the measuring inputs themselves must not exceed 5 volts (between B, C, D, A and -).
9. Display and keypad

9. DISPLAY AND KEYPAD

9.1 Display

The display (2) on the ALMEMO® 2450-1L measuring instrument is a 2-row LCD arrangement; the main field comprises 5x 7-segment digits (e) plus 2x 16-segment digits (d) for depicting the measured value; the function field comprises 4½x 7-segment digits (b) for depicting various measuring functions (a); there are also 2 arrows (f) for depicting the operating status.

![Diagram of display and keypad](image)

<table>
<thead>
<tr>
<th>Display of measuring functions in the function field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring point</td>
</tr>
<tr>
<td>Maximum value</td>
</tr>
<tr>
<td>Minimum value</td>
</tr>
<tr>
<td>Saved value</td>
</tr>
<tr>
<td>Temperature value from double sensors</td>
</tr>
<tr>
<td>Configuration of locking</td>
</tr>
<tr>
<td>Configuration of automatic OFF</td>
</tr>
</tbody>
</table>
Special operating states and faults

Display segment test: runs automatically after switch ON
Supplement voltage: Display after segment test
Under 3.8 V: LOBAT arrow lights up

Relative measuring with respect to a reference value: REL arrow lights up

Checksum error in device calibration: CALEr
Non-connected sensors, deactivated measuring points: -----
Measuring range / function not permitted: Err
Multiplexer M5 (D-B) is not allowed: ErrI

Sensor breakage: NiCr flashes
Outside of measuring range, undershoots, cold junction compensation or cold junction compensation breakage: CJ flashes

Overshoots values range (>65000): 65000 flashes
Overshoots measuring range: Maximum value flashes
Undershoots measuring range: Minimum value flashes

9.2 Keypad
To operate the device a keypad with 7 keys is provided:

Function:

To switch ON the device: (see Section 7.3) [Key: ON OFF]
To switch OFF the device: [Key: ON OFF] must be pressed and held down
Function: Selection of measuring points (see Section 10.1.1) [Key: M▲ or M▼]
9. Display and keypad

Displaying the maximum value: (see Section 10.2) \(\text{MAX} \)
To delete press and hold down
Displaying the minimum value: (see Section 10.2) \(\text{MIN} \)
To delete press and hold down
Zero-setting the measured value: (see Section 10.4) \(\text{CLR} \)
To delete press and hold down
Saving the measured value: (see Section 10.3) \(\text{MEM} \)
Displaying the battery voltage: \(\text{ON OFF} \)

10. MEASURING OPERATIONS

On the ALMEMO® 2450-1L all measuring channels, whenever available, are scanned semi-continuously at 2.5 mops; (see Manual 6.5). Up to 4 measuring points can be displayed; (see Section 8.2)

10.1 Measured value

After switching ON first of all a segment test is performed; then the battery voltage appears and if the batteries are almost empty (<3.8 V) the LOBAT arrow also appears.

The measured value is then displayed with the appropriate units in the main field and the measuring point is displayed in the function field. All special operating states possible for the measured value are explained in Section 8.1.

10.1.1 Selecting a measuring point

By pressing key \(\text{M} \uparrow \) you can select one after the other all active measuring points and have the current measured value displayed for each. By pressing key \(\text{M} \downarrow \) you can return to the previous channel.

To increment the measuring channel press key: \(\text{M} \uparrow \)
To decrement the measuring channel press: \(\text{M} \downarrow \)

When switching between channels the abbreviation for the measuring range is briefly displayed; (see 10.1.2).
10.1.2 Measuring ranges
With each channel switchover or sensor breakage the abbreviation for the measuring range appears in the display. For identification purposes the following table lists all possible measuring ranges supported by this device.

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Sensor / connector</th>
<th>Measuring range</th>
<th>Units</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCr-Ni (K)</td>
<td>FT Axxx</td>
<td>-200.0...+1370.0</td>
<td>°C</td>
<td>NiCr</td>
</tr>
<tr>
<td>NiCroSil-NiSi (N)</td>
<td>ZA 9020-FSN</td>
<td>-200.0...+1300.0</td>
<td>°C</td>
<td>NiSi</td>
</tr>
<tr>
<td>Fe-CuNi (L)</td>
<td>ZA 9000-FSL</td>
<td>-200.0...+900.0</td>
<td>°C</td>
<td>FECO</td>
</tr>
<tr>
<td>Fe-CuNi (J)</td>
<td>ZA 9000-FSJ</td>
<td>-200.0...+950.0</td>
<td>°C</td>
<td>IrCo</td>
</tr>
<tr>
<td>Cu-CuNi (U)</td>
<td>ZA 9000-FSU</td>
<td>-200.0...+600.0</td>
<td>°C</td>
<td>CuCO</td>
</tr>
<tr>
<td>Cu-CuNi (T)</td>
<td>ZA 9000-FST</td>
<td>-200.0...+400.0</td>
<td>°C</td>
<td>CoCo</td>
</tr>
<tr>
<td>PtRh10-Pt (S)</td>
<td>FS Axxx</td>
<td>0.0...+1760.0</td>
<td>°C</td>
<td>Pt10</td>
</tr>
<tr>
<td>Ntc Typ N</td>
<td>FN Axxx</td>
<td>-20.00...+100.00</td>
<td>°C</td>
<td>Ntc</td>
</tr>
<tr>
<td>Millivolt</td>
<td>ZA 9000-FS0</td>
<td>-10.000...+55.000</td>
<td>mV</td>
<td>U 55</td>
</tr>
<tr>
<td>Millivolt 1</td>
<td>ZA 9000-FS1</td>
<td>-26.000...+26.000</td>
<td>mV</td>
<td>U 26</td>
</tr>
<tr>
<td>Millivolt 2</td>
<td>ZA 9000-FS2</td>
<td>-260.00...+260.00</td>
<td>mV</td>
<td>U260</td>
</tr>
<tr>
<td>Volt</td>
<td>ZA 9000-FS3</td>
<td>-0.2600...+2.6000</td>
<td>V</td>
<td>U 2,60</td>
</tr>
<tr>
<td>Difference millivolt</td>
<td>ZA 9000-FS0D</td>
<td>-10.000...+55.000</td>
<td>mV</td>
<td>d 55</td>
</tr>
<tr>
<td>Difference millivolt 1</td>
<td>ZA 9000-FS1D</td>
<td>-26.000...+26.000</td>
<td>mV</td>
<td>d 26</td>
</tr>
<tr>
<td>Difference millivolt 2</td>
<td>ZA 9000-FS2D</td>
<td>-260.00...+260.00</td>
<td>mV</td>
<td>d260</td>
</tr>
<tr>
<td>Difference volt*</td>
<td>ZA 9000-FS3D</td>
<td>-0.2600...+2.6000</td>
<td>V</td>
<td>d2,60</td>
</tr>
<tr>
<td>Sensor voltage</td>
<td>any</td>
<td>0.00...20.00</td>
<td>V</td>
<td>UbAt</td>
</tr>
<tr>
<td>Milliamperere</td>
<td>ZA 9601-FS1</td>
<td>0.000...+26.000</td>
<td>mA</td>
<td>I032</td>
</tr>
<tr>
<td>Percent (4-20mA)</td>
<td>ZA 9601-FS2</td>
<td>0.00...100.00</td>
<td>%</td>
<td>P420</td>
</tr>
<tr>
<td>Frequency</td>
<td>ZA 9909-AK1</td>
<td>0...32000</td>
<td>Hz</td>
<td>FrEq</td>
</tr>
<tr>
<td>Digital input</td>
<td>ZA 9000-EK2</td>
<td>0.0...100.00</td>
<td>%</td>
<td>Inp</td>
</tr>
<tr>
<td>Digitale interface</td>
<td>ZA 9919-AKxx</td>
<td>-65000...+65000</td>
<td>diGi</td>
<td></td>
</tr>
<tr>
<td>Snap-on head normal 20</td>
<td>FV A915-S120</td>
<td>0.30...20.00</td>
<td>m/s</td>
<td>S120</td>
</tr>
<tr>
<td>Snap-on head normal 40</td>
<td>FV A915-S140</td>
<td>0.40...40.00</td>
<td>m/s</td>
<td>S140</td>
</tr>
<tr>
<td>Snap-on head micro 20</td>
<td>FV A915-S220</td>
<td>0.50...20.00</td>
<td>m/s</td>
<td>S220</td>
</tr>
<tr>
<td>Snap-on head micro 40</td>
<td>FV A915-S240</td>
<td>0.60...40.00</td>
<td>m/s</td>
<td>S240</td>
</tr>
<tr>
<td>Macro</td>
<td>FV A915-MA1</td>
<td>0.10...20.00</td>
<td>m/s</td>
<td>L420</td>
</tr>
<tr>
<td>Water-Micro</td>
<td>FV A915-WM1</td>
<td>0.00...5.00</td>
<td>m/s</td>
<td>L605</td>
</tr>
<tr>
<td>Relative air humidity, capacitive</td>
<td>FH A646</td>
<td>0.0...100.0</td>
<td>% H</td>
<td>‘orH</td>
</tr>
<tr>
<td>Rel. air humidity, capacitive TC</td>
<td>FH A646-C</td>
<td>0.0...100.0</td>
<td>% H</td>
<td>HcrH</td>
</tr>
<tr>
<td>Rel. air humidity, capacitive TC</td>
<td>FH A646-R</td>
<td>0.0...100.0</td>
<td>% H</td>
<td>H rH</td>
</tr>
<tr>
<td>Mixture ratio, capacitive</td>
<td>FH A646</td>
<td>0.0...500.0</td>
<td>g/k</td>
<td>H AH</td>
</tr>
<tr>
<td>Dew-point temperature, cap.</td>
<td>FH A646</td>
<td>-25.0...100.0</td>
<td>°C</td>
<td>H dt</td>
</tr>
<tr>
<td>Partial vapor pressure, cap.</td>
<td>FH A646</td>
<td>0.0...1050.0</td>
<td>mb</td>
<td>H UP</td>
</tr>
<tr>
<td>Enthalpy, capacitive</td>
<td>FH A646</td>
<td>0.0...400.0</td>
<td>kJ</td>
<td>H En</td>
</tr>
</tbody>
</table>

* Double connectors with differential voltage / differential current (D-B) cannot be used
10. Measuring operations

<table>
<thead>
<tr>
<th>Transducer</th>
<th>Sensor / connector</th>
<th>Measuring range</th>
<th>Units</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions channels:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Hi</td>
<td></td>
</tr>
<tr>
<td>Minimum value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Lo</td>
<td></td>
</tr>
<tr>
<td>Alarm value of channel Mb1</td>
<td>any</td>
<td></td>
<td>Alrn</td>
<td></td>
</tr>
<tr>
<td>Measured value of Mb1</td>
<td>any</td>
<td></td>
<td>MESS</td>
<td></td>
</tr>
<tr>
<td>Cold junction temperature</td>
<td>any</td>
<td></td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>TC=Temperature compensation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.1.3 Double display

On all double sensors incorporating a temperature sensor on the 1st channel the temperature value can at the same time be displayed in the function field.

Select 2nd channel

Activate temperature display Press and hold down M▲

Return to channel display Press and hold down M▲

10.2 Peak value memory

From the measured values acquired for each measuring point the highest and the lowest values are continuously recorded. To display these high/low peak values first the desired channel must be set (see Section 7.1) and then the MAX or MIN key must be pressed. As a check the display also includes the associated symbol.

To display the maximum value press key : MAX.
To display the minimum value press key : MIN.
To delete the maximum value press and hold down key : MAX .
To delete the minimum value press and hold down key : MIN .
To return to the measuring point display press key :

As soon as you clear the memory, the current measured value will appear (because measuring is continuous).

10.3 Measured value memory

On the ALMEMO® 2450-1L any measured value can be saved. To save the measured value press key : MEM .

The value most recently saved then appears in the function field preceded by the symbol ‘M’. To return to the channel display press key : M▲.
10.4 Relative measuring

One very useful function is to zero the measured value at certain locations or at certain times as a reference value in order then to observe only the subsequent deviations. This function is independent of the locking status and does not modify the programming parameters in the connector.

To zero-set the measured value press key:
To display relative measuring press arrow:
To return to normal measured value press and hold down key:

Setting to zero automatically deletes the maximum and minimum values for this channel. The MAX, MIN, and MEM functions are thus also available for relative measurement.

11. DEVICE CONFIGURATION

On the ALMEMO® 2450 measuring instrument a number of parameters can be configured. To do so when switching ON press and hold down key. The function field should then show an abbreviation for the parameter and the main field should show the value currently set.

To select from all possible parameters, if any are available, press keys:

Locking the CLR key: see 11.2

Automatic switch OFF time in minutes: see 11.1

To enter a value first press: starts flashing.
To modify the value press keys:
To delete parameters press:
Entry is completed by again pressing key:

To terminate configuration at any time press key:
11. Device configuration

11.1 Automatic switch OFF
In menu item ‘A0FF’ an automatic device switch OFF time can be pro-
grammed in minutes; this will help save the batteries. This automatic device
switch OFF will not take effect if the setting is ‘- -’ or if a mains adapter or an
interface cable is connected.

11.2 Device locking
The measured value in the main field of the display can be manipulated by
pressing key `CLR` and setting it to zero. This function can be evaluated in dif-
ferent ways or even switched off in cases where there is a risk of accidentally
activating relative measuring by zero-setting the measured value.

Loc parameter :
0 The offset is saved in RAM, base or zero-point - depending on locking
1 The offset is saved in RAM only.
2 Relative measuring is locked

12. TROUBLE-SHOOTING
The ALMEMO® 2450-1L measuring instrument can be configured and pro-
grammed in many versatile ways. It is suitable for connecting a wide variety of
different sensors. Given these numerous possibilities the device may in certain
circumstances not behave quite as expected. The cause of such unexpected
behavior is only very rarely a device defect; more usually it is incorrect opera-
tion by the user, an invalid setting, or unsuitable cabling. In such event try to
pinpoint and clear the problem with the aid of the following tests.

Error: No display, display malfunction, keys do not react
Remedy: Check the power supply; replace the batteries; switch off and then
on again; if necessary re-initialize (see 7.3).

Error: Measured values are incorrect.
Remedy: Switch Device OFF / ON, press key and hold `CLR`. Check all the
sensor programming very carefully, especially the base value and
zero-point.

Error: Fluctuating measured values or the system hangs in mid-operation.
Remedy: Check the cabling for any inadmissible electrical connections,
Unplug any suspicious sensors.
Connect hand-held sensors in air or phantoms (for thermocouples
short-circuit AB) and check.
Connect the sensors again one at a time and check successively.
If a fault persists for any one connection, then check all wiring; if
necessary, insulate the sensor and eliminate interference by using
shielded or twisted wiring.

Error: ‘CALEr’ is displayed when the device is switched on.
Remedy: The calibration of a measuring range may have become misad-
Trouble-shooting

justed. The device must be recalibrated at the factory.
If, after performing the above-listed checks and remedial steps, the device still
fails to behave as described in the operating instructions, it must be returned to
our factory in Holzkirchen with error description.

13. DECLARATION OF CONFORMITY

Ahlborn Mess- und Regelungstechnik GmbH declares herewith that measuring
instrument ALMEMO® 2590 carries the CE label and complies in full with the
requirements of EU directives relating to low voltage and to electromagnetic
compatibility (EMC) (89/336/EWG).

The following standards have been applied in evaluating the product.

 Safety / security: EN 61010-1:2001
 EMC: EN 61326: 2006

If a product is modified in any manner not agreed with us
in advance, this declaration becomes void.

When using the sensor with an extension care must be taken to ensure that
wiring is not laid alongside or close to high-voltage power cables and that it is,
if necessary, properly shielded so as to prevent spurious interference being in-
duced in the system.

The following advisory notes must be observed when operating the device:
Using the device in strong electromagnetic fields may aggravate measuring er-
rors (<50 µV at 3 V/m and 1.5 meters thermocouple sensor). After exposure to
such irradiation ceases, the device will again operate within its technical speci-
fications.
14. APPENDIX

14.1 Technical data

Measuring inputs: 1 ALMEMO® socket suitable for ALMEMO® connectors
Measuring channels: maximum 3 additional channels for double sensors and function channels

A/D converter: Delta - sigma, 16-bit, 2.5 mops, adjustable 1 to 100
Measuring ranges: see Measuring range list Chap. 10.1.2 on page 20
Some measuring ranges differ from the standard ALMEMO® ranges

Sensor power supply: 9 volts, maximum 150 mA

Standard equipment:

LCD: Measured value: 5x 7-segment 15 mm, 2x 16-segment 9 mm
Function: 4½ x 7-segment 9 mm, 9 symbols
Operation: 7 silicone keys
Memory: 1 Measured value on the RAM

Power supply:

Batteries: 3 AA alkaline batteries
Current consumption: approx. 10 mA (without input modules)

Housing:

(LxWxH) 127 x 83 x 42 mm
ABS (acrylonitrile butadiene styrene), weight: approx. 260 g

Suitable conditions

Operating temperature: -10 to +50 °C
(Storage temperature: -20 to +60 °C)
Ambient relative humidity: 10 to 90 % rH (non-condensing)

14.2 Product overview

Universal measuring instrument ALMEMO 2450-1L

Order no. MA 2450-1L
1 measuring input, 2-row LCD, 7 keys, battery supply

Options

Measuring ranges for temperature display of 10 refrigerants SB 0000-R
Top hat rail mounting ZB 2450-HS
14.3 Index

additional channels 8.2 13
AOFF 11.1 20
Automatic switch OFF 11.1 20
Battery operation 7.1 11
Connecting the transducers 8 12
Data buffering 7.4 12
Declaration of conformity 13 21
Device configuration 11 19
Device locking 11.2 20
Display 9 14
Double display 10.1.3 18
faults 9.1 15
Function field 9.1 14
Functions 5.1 9
Functions channels 10.1.2 18
Housing 14.1 22
Initial commissioning 6 11
Introduction 5 9
keypad 9 14
Keypad 9.2 15
Main field 9.1 14
maximum value 10.2 18
Measured value 10.1 16
Measured value memory 10.3 18
Measuring inputs 8.2 13
Measuring inputs 14.1 22
Measuring operations 10 16
Measuring ranges 10.1.2 17
minimum value 10.2 18
ON OFF 9.2 15f.
operating states 9.1 15
Options 14.2 22
Order no. 14.2 22
Peak value memory 10.2 18
Power supply 14.1 11, 22
Product overview 14.2 22
reference value 10.4 19
reinitialization 7.3 12
Relative measuring 10.4 19
Safety instructions 4 7
Scope of delivery 3.2 6
Selecting a measuring point 10.1.1 16
14. Appendix

Sensor programming 5.1.1 9
Sensor supply 7.2 11
Standard equipment 14.1 22
Suitable conditions 14.1 22
supply voltage monitoring 7.1 11
Switching ON / OFF 7.3 12
Technical data 14.1 22
Temperature compensation 10.1.2 18
the measured value 10.4 19
To switch OFF 9.2 15
To switch ON 9.2 15
Transducers 8.1 12
Trouble-shooting 12 20
Warranty 3.1 5
Waste disposal 3.3 6

14.4 Your contact
AHLBORN Mess- und Regelungstechnik GmbH
Eichenfeldstraße 1
83607 Holzkirchen
Germany

internet : http://www.ahlborn.com
e-mail : amr@ahlborn.com

Even the greatest possible care cannot exclude the possibility of inaccuracies.
We reserve the right to make technical changes without advance notice.