Bedienungsanleitung
Deutsch

Messwerterfassungsanlage
ALMEMO® 5690-2M

V6

V4.1
15.03.2013

www.ahlborn.com
1. Bedienelemente

1. BEDIENELEMENTE

1.1 Frontseite

(1) LCD-Anzeige

Statuszeile:
- **C**: Cont. Messstellenabfrage
- **REC**: Messung Start, Stop
- **COM**: Speicher-Aufnahme
- **AVG**: Messwertausgabe
- **R01**: Messung Anfang, Ende progr.
- **ALARM**: Zustand der Alarmläden
- **LOCKED**: Beleuchtung an, Pause

13 Zeilen für Funktionen

Funktion der Tasten F1, F2, F3, F4

(2) Kontrollampen

- **START**: Messung gestartet
- **REC**: Messung mit Speichern
- **COM**: Messung mit Ausgabe
- **AVG**: Mittelwertbildung
- **ALARM**: Grenzwerterkennung
- **LOCKED**: Tasten verriegelt

(3) Tastatur

- **F1** ... **F4**: Funktionstasten (Softkeys)
- **ON**: Gerät eingeschaltet
- **SLEEP**: blinkt im Sleepmode
- **CHARGE**: Akku wird geladen, geht aus, wenn Akku voll

Cursorblock

- **ON**: Einschalten
- **PROG**: Programmieren
- **etermined**: Ausschalten lang drücken

- ▲, ▼, ►: Funktionswahl, Eingabe
-◄: Letztes Menü

(4) Steckplatz Speichercard

- **MMC**: Steckplatz für MMC- und SD-Speichercards s. 12.2.1
1.2 Rückseite

(5) Einschub AP: Akku (Option)
(a) Anschlussbuchse DC-A 12V
Netzadapter (ZB 1212-NA9, 12V/2.5A)
(b) Kontrollampen
DC-A Netzversorgung vorhanden
CHARGE Akku wird geladen, geht aus, wenn Akku voll

(6) Einschub MM-A9:
Messkreiskarte ALMEMO
(c) Messeingänge M0 bis M8
M0 ... M8 für alle ALMEMO-Fühler
M9...M39 31 Zusatzkanäle
(d) Kodierschalter
G: Gerätadresse 0 bis 99
(e) Taster ON/OFF, START/STOP
keine Funktion

(f) Ausgangsbuchsen A1, A2
A1 Schnittstelle/LWL (ZA1909-DK5/L)
USB-Schnittstelle (ZA1919-DKU)
RS 422 (ZA 5099-NVL/NVB)
Ethernet (ZA 1945-DK)
Bluetooth (ZA 1709-BTx)
A2 Netzwerkkabel (ZA1999-NK5/NKL)
A1/A2 Triggereingang (ZA 1000-ET/EK)
V6-Peripherie (ZA 8006-RTA3)
Analogausgang 2 (ZA 1601-RK)

(g) Anschlussbuchse DC 12V
Netzadapter (ZB 1212-NA9, 12V/2.5A)
Kabel galv. getr. (ZB 3090-UK2, 10-30V)

(h) Erdungsbuchse

(i) Kontrollampen
ON Gerät eingeschaltet
START Messung gestartet
REC Messung mit Speichern
COM Messung mit Ausgabe
ALARM Grenzwertüberschreitung
Fühlerbruch, Lobat (blinkt)
1. Bedienelemente

Erweiterung der Messstellen mit Umschalterkarten:

(7) Einschub U-A10: Umschalterkarte 10 ALMEMO-Buchsen
 Messeingänge 0 bis 9 \(x_0 \ldots x_9 \) für alle ALMEMO-Fühler
 \(x_{10}\ldots x_{39} \) max. 30 Zusatzkanäle

(j) Kodierschalter M:
 Messstelle x: 10 bis 90

(8) Einschub U-MU: Umschalterkarte 10fach-MU-Stecker
 Messeingänge \(x_0 \ldots x_9 \) für anal. Fühler ohne Stromversorgung
 \(x_{10}\ldots x_{39} \) max. 30 Zusatzkanäle
 Kodierschalter int: Messstelle x: 10 bis 90 auf der Platine

(9) Einschub U-TH: Umschalterkarte 10 Thermobuchsen
 Messeingänge \(x_0 \ldots x_9 \) für 10 Thermoelemente
 \(x_{10}\ldots x_{39} \) max. 30 Zusatzkanäle
 Kodierschalter int: Messstelle x: 10 bis 90 auf der Platine

(10) Einschub U-KS: Umschalterkarte 2x5fach-Klemmstecker
 Messeingänge \(x_0 \ldots x_9 \) für anal. Fühler ohne Stromversorgung
 \(x_{10}\ldots x_{39} \) max. 30 Zusatzkanäle
 Kodierschalter int: Messstelle x: 10 bis 90 auf der Platine

(11) Einschub RTA5: Relais-Trigger-Analog-Einschub
 für 5 orange ALMEMO®-Klemmstecker

Buchsen P0/1 bis P8/9
 P0/1 2 Halbleiterrelais R0, R1
 P2/3 2 Halbleiterrelais R2, R3
 P4/5 2 Analogausgänge (Option)
 P6/7 2 Analogausgänge (Option)
 P8/9 2 Triggereingänge TR8, TR9

LED-Signallampen
 ON Stromversorgung ein
 Px Act Port aktiv
 Px Inv Port invers angesteuert
 WATCHDOG Ausfall der Ansteuerung
Inhaltsverzeichnis

1. BEDIENELEMENTE
 1.1 Frontseite .. 2
 1.2 Rückseite .. 3

2. ALLGEMEINES
 3.1 Garantie ... 9
 3.2 Lieferumfang ... 10
 3.3 Entsorgung .. 10

3. SICHERHEITSHINWEISE
 4.1 Besondere Bedienhinweise .. 11
 4.2 Umgang mit Akkus (Option) ... 12

4. EINFÜHRUNG
 5.1 Funktionen des ALMEMO 5690-2M 13
 5.1.1 Fühlerprogrammierung ... 14
 5.1.2 Messung ... 15
 5.1.3 Ablaufsteuerung ... 16

5. INBETRIEBNAHME ... 18

6. STROMVERSORGUNG ... 19
 7.1 Netzbetrieb ... 19
 7.2 Externe Gleichspannungsversorgung 19
 7.3 Akkubetrieb (Nur mit Einschub ES5690-AP) 19
 7.4 Fühlerversorgung .. 20
 7.5 Ein-, Ausschalten, Neuinitialisierung 20
 7.6 Datenpufferung ... 20

7. ANSCHLUSS DER MESSWERTGEBER 21
 8.1 Messwertgeber ... 21
 8.2 Messeingänge und Zusatzkanäle 21
 8.3 Erweiterung der Messstellen .. 22
 8.4 Potentialtrennung ... 24

8. RELAIS-TRIGGER-ANALOG-EINSCHUB 25
 9.1 Stromversorgung .. 25
 9.2 Interfacelemente und Optionen 25
 9.2.1 Relais .. 26
 9.2.2 Triggereingänge ... 26
 9.2.3 Analogausgänge ... 26
 9.2.4 Anschluss der Peripherie ... 27
 9.2.5 Inbetriebnahme ... 27
 9.3 Technische Daten .. 27

9. ANZEIGE UND TASTATUR .. 28
 10.1 Anzeige und Menüwahl .. 28
 10.2 Kontrollsymbole im Display und Kontroll-LED´s 29
10.3 Funktionstasten .. 29
10.4 Funktionsanwahl ... 30
10.5 Dateneingabe ... 30

11. MESSEN ÜBER MESS-MENÜS .. 31

11.1 Messen mit einer Messstelle ... 32
 11.1.1 Anwahl einer Messstelle ... 32
 11.1.2 Spitzenwertspeicher mit Uhrzeit und Datum ... 32

11.2 Messwertkorrektur und Kompensation ... 33
 11.2.1 Messwert nullsetzen ... 33
 11.2.2 Nullpunktabgleich .. 34
 11.2.3 Fühlerabgleich bei chemischen Sensors .. 34
 11.2.4 Zweipunktabgleich mit Sollwerteingabe .. 35
 11.2.5 Temperaturkompensation .. 36
 11.2.6 Luftdruckkompensation ... 36
 11.2.7 Vergleichsstellenkompensation .. 37

11.3 Messstellenabfragen und Ausgabe .. 37
 11.3.1 Einmalige Ausgabe/Speicherung aller Messstellen .. 38
 11.3.2 Zyklische Ausgabe/Speicherung aller Messstellen .. 38
 11.3.3 Speicherplatz, Speicher ausgeben und löschen .. 39
 11.3.4 Menüfunktionen ausgeben ... 39
 11.3.5 Messwertdarstellung als Liniengrafik ... 40

11.4 Mittelwertbildung .. 41
 11.4.1 Messwertdämpfung durch gleitende Mittelwertbildung 42
 11.4.2 Mittelmodus ... 42
 11.4.3 Mittelwertbildung über manuelle Einzelmessungen .. 43
 11.4.4 Netzmessung .. 43
 11.4.5 Mittelwertbildung über die Messzeit, bzw. Messdauer .. 44
 11.4.6 Messzeit, Messdauer, Timer ... 45
 11.4.7 Mittelwertbildung über den Zyklus ... 45
 11.4.8 Mittelwertbildung über Messstellen ... 46
 11.4.9 Volumenstrommessung ... 48

11.5 Darstellung von mehreren Messstellen .. 49
 11.5.1 Menü Mehrkanalanzeige und Balkengrafik ... 49
 11.5.2 Differenzmessung .. 49
 11.5.3 Menü Messstellenliste ... 50

11.6 Assistent-Menüs für Spezialmessungen .. 50
 11.6.1 Wärmekoeffizient ... 51
 11.6.2 Wet-Bulb-Globe-Temperatur .. 51

11.7 Anwendermenüs ... 51
 11.7.1 Funktionen .. 52
 11.7.2 Konfiguration der Menüs .. 53
 11.7.3 Funktionsausdrucke .. 53

12. PROGRAMMIEREN MIT PROGRAMMIER-MENÜS .. 55

12.1 Zeiten und Zyklen .. 55
 12.1.1 Uhrzeit und Datum .. 55
12.1.2 Zyklus mit Speicheraktivierung und Ausgabeformat	55
12.1.3 Messrate, kontinuierliche Messstellenabfrage	56
12.1.4 Anfangszeit -datum, Endezeit -datum, Messdauer	57
12.2 Messwertspeicher	58
12.2.1 Speicher mit Speichercard	58
12.2.2 Messdatenaufnahme	59
12.2.3 Nummerierung von Messungen	60
12.2.4 Starten und Stoppen von Messungen	60
12.2.5 Abfragemodus	60
12.2.6 Speicherausgabe	62
12.3 Fühlerprogrammierung	63
12.3.1 Eingabekanal anwählen	63
12.3.2 Messstellenbezeichnung	64
12.3.3 Mittelmodus	64
12.3.4 Verriegelung der Fühlerprogrammierung	64
12.3.5 Grenzwerte	65
12.3.6 Skalierung, Dezimalpunkteinstellung	65
12.3.7 Korrekturwerte	66
12.3.8 Dimensionsänderung	66
12.3.9 Messbereichswahl	67
12.3.10 Funktionskanäle	70
12.3.11 Sondermessbereiche, Linearisierung, Mehrpunktkalibration	71
12.4 Spezialfunktionen	72
12.4.1 Druckzyklusfaktor	72
12.4.2 Minimale Fühlerversorgungsspannung	72
12.4.3 Grenzwertaktionen	73
12.4.4 Analog-Anfang und -Ende	74
12.4.5 Ausgabefunktion	74
12.4.6 Bezugskanal 1	75
12.4.7 Bezugskanal 2 oder Multiplexer	75
12.4.8 Elementflags	75
12.5 Gerätekonfiguration	76
12.5.1 Gerätebezeichnung	76
12.5.2 Geräteadresse und Vernetzung	76
12.5.3 Baudrate, Datenformat	77
12.5.4 Sprache	77
12.5.5 Beleuchtung und Kontrast	77
12.5.6 Luftdruck	78
12.5.7 Hysterese	78
12.5.8 Betriebsparameter	78
12.6 Ausgangsmodule	78
12.6.1 Datenkabel	79
12.6.2 Relais-Trigger-Analog-Module	79
12.6.3 Analogausgang	81
12.7 Menü Stromversorgung	82
2. Inhaltsverzeichnis

12.8 Menü Verriegelung, Kalibrierung (Option KL)......................83
13. FEHLERSUCHE..84
14. KONFORMITÄTSERKLÄRUNG...85
15. ANHANG..86
 15.1 Technische Daten...86
 15.2 Stichwortverzeichnis..88
 15.3 Ihre Ansprechpartner...94
3. ALLGEMEINES

3.1 Garantie

In folgenden Fällen ist eine Garantieleistung ausgeschlossen:

- Bei unerlaubten Eingriffen und Veränderungen im Gerät durch den Kunden
- Betrieb außerhalb der für dieses Produkt geltenden Umgebungsbedingungen
- Verwendung von ungeeigneter Stromversorgung und Peripheriegeräten
- Nicht bestimmungsmäßiger Gebrauch des Gerätes
- Beschädigungen durch elektrostatische Entladungen oder Blitzschlag
- Nichtbeachtung der Bedienungsanleitung

Die Änderung der Produkteigenschaften zugunsten des technischen Fortschritts oder auf Grund von neuen Bauteilen bleibt dem Hersteller vorbehalten.
3. Allgemeines

3.2 Lieferumfang
Achten Sie beim Auspacken auf Beschädigungen des Gerätes und die Vollständigkeit der Lieferung:

- Messgerät ALMEMO® 5690-2M,
- Speichercard und USB-Kartenleser,
- Netzadapter ZB 1212-NA9 12V 2.5A,
- diese Bedienungsanleitung,
- ALMEMO®-Handbuch,
- CD mit Software AMR-Control und nützlichem Zubehör

Im Falle eines Transportschadens ist das Verpackungsmaterial aufzubewahren und der Lieferant umgehend zu informieren.

3.3 Entsorgung

- Entsorgen Sie Verpackungsmaterial gemäß der landesüblichen Vorschriften!
- Entsorgen Sie Kartonagen, Schutzverpackungen aus Plastik und Konservierungsstoffe separat und fachgerecht!
- Die Entsorgung des Geräts (auch Geräteiteile, Betriebsmittel) richtet sich nach den örtlichen Entsorgungsvorschriften, sowie den im Anwenderland gegebenen Umweltschutzgesetzen.
- Verwenden Sie für den Versand möglichst das Originalverpackungsmaterial.
4. SICHERHEITSHINWEISE

GEFAHR Lebens-, Verletzungsgefahr und Verursachung von Sachschäden!
Bedienungsanleitung vor erster Inbetriebnahme sorgfältig lesen!
Allgemeine Sicherheitshinweise und auch die in den anderen Kapiteln eingefügten speziellen Sicherheitshinweise beachten!
Es bestehen Gefahren bei:
• Missachtung der Bedienungsanleitung und aller darin befindlichen Sicherheitshinweise.
• unerlaubten Eingriffen und Veränderungen im Gerät durch den Kunden.
• bei Betrieb außerhalb der für dieses Produkt geltenden Umgebungsbedingungen.
• Verwendung von ungeeigneter Stromversorgung und Peripheriegeräten.
• nicht bestimmungsgemäßem Gebrauch des Gerätes.
• Beschädigungen durch elektrostatische Entladungen oder Blitzschlag.

GEFAHR Lebensgefahr durch gefährliche elektrische Spannung!
Es bestehen Gefahren bei:
• Verwendung von ungeeigneter Stromversorgung und Peripheriegeräten.
• Beschädigungen durch elektrostatische Entladungen oder Blitzschlag.
• Verlegen Sie Fühlerleitungen nicht in der Nähe von Starkstromleitungen.
• Achten Sie auf die Ableitung statischer Elektrizität, bevor Sie Fühlerleitungen berühren.

GEFAHR Warnung vor explosionsfähiger Atmosphäre oder Stoffen!
Es besteht Explosionsgefahr in der Nähe von Kraftstoffen oder Chemikalien!
Benutzen Sie das Gerät nicht in Sprenggebieten oder an Tankstellen!
4. Sicherheitshinweise

4.1 Besondere Bedienhinweise

- Achten Sie beim Anschluss von Fühlern und elektrischen Signalen, dass keine Verbindung zu gefährlichen Spannungen entstehen.
- Wenn das Gerät aus kalter Umgebung in den Betriebsraum gebracht wird, kann auf der Elektronik Betauung auftreten. Bei Thermoelementmessungen sind bei starken Temperaturänderungen zudem größere Messfehler möglich. Warten Sie deshalb, bis das Gerät an die Umgebungstemperatur angepasst ist, bevor Sie es in Betrieb nehmen.
- Beim Anschluss von Netzadaptern beachten Sie die Netzspannung.
- Achten Sie auf die maximale Belastbarkeit der Fühlerstromversorgung.
- Fühler mit Versorgung sind nicht voneinander galvanisch getrennt (s. 8.4).

4.2 Umgang mit Akkus (Option)

Die Akkus sind bei Auslieferung zunächst meist nicht geladen. Sie sollten deshalb als erstes mit dem beiliegenden Netzadapter nachgeladen werden, bis das Lämpchen **CHARGE** aufhört zu leuchten.

Achten Sie darauf, dass Akkus nicht kurzgeschlossen oder ins Feuer geworfen werden.

Akkus sind Sondermüll und dürfen nicht im Hausmüll entsorgt werden!
5. EINFÜHRUNG

- Genaue Erläuterung des ALMEMO®-Systems (Hb. Kap.1)
- Übersicht über Funktionen und Messbereiche der Geräte (Hb. Kap.2)
- Alle Fühler mit Grundlagen, Bedienung und technischen Daten (Hb. Kap.3)
- Die Anschlussmöglichkeiten eigener Sensoren (Hb. Kap.4)
- Alle analogen und digitalen Ausgangsmodule (Hb. Kap.5.1)
- Die Schnittstellenmodule RS232, LWL, Centronics (Hb. Kap.5.2)
- Das gesamte ALMEMO®-Vernetzungssystem (Hb. Kap.5.3)
- Alle Funktionen und ihre Bedienung über die Schnittstelle (Hb. Kap.6)
- Komplette Schnittstellenbefehlsliste mit allen Druckbildern (Hb. Kap.7)

In der vorliegenden Anleitung sind nur noch die gerätespezifischen Eigenschaften und Bedienelemente aufgeführt. In vielen Kapiteln wird deshalb häufig auf die ausführliche Erläuterung im Handbuch (Hb. x.x.x) hingewiesen.

5.1 Funktionen des ALMEMO 5690-2M

Serienmäßig wird die Anlage mit einem 12V-Netzadapter versorgt. Optional ist jedoch zusätzlich ein Akku-Einschub einsteckbar.
5. Einführung

5.1.1 Fühlerprogrammierung

Die Messkanäle werden durch die ALMEMO®-Stecker automatisch vollständig programmiert. Die Programmierung kann jedoch vom Anwender sowohl über die Tastatur als auch über die Schnittstelle beliebig ergänzt oder geändert werden.

Messbereiche

Funktionskanäle

Dimension

Die 2-stellige Dimension kann bei jedem Messkanal geändert werden, so dass im Display und im Ausdruck, z.B. bei Transmitteranschluss, immer die richtige Dimension erscheint. Die Umrechnung von °C in °F erfolgt bei der entsprechenden Dimension automatisch.

Messwertbezeichnung

Zur Identifizierung der Fühler ist außerdem eine 10-stellige alphanumerische Bezeichnung vorgesehen. Sie wird über die Tastatur oder Schnittstelle eingegeben und erscheint im Display, Ausdruck oder auf dem Rechner-Bildschirm.

Messwertkorrektur

Zur Messwertkorrektur kann der Messwert jedes Messkanals in Nullpunkt- und Steigung korrigiert werden, sodass auch Fühler austauschbar werden, die normalerweise erst justiert werden müssen (Dehnung, Kraft, pH). Nullpunkt- und teilweise auch Steigungsabgleich auf Tastendruck.
Skalierung
Mit Basiswert und Faktor ist der korrigierte Messwert jedes Messkanals in Nullpunkt und Steigung zusätzlich skalierbar. Die Stellung des Dezimalpunktes lässt sich mit dem Exponenten einstellen. Mit Nullsetzen und Sollwerteingabe oder Skalierungsmenü lassen sich die Skalierwerte auch automatisch berechnen.

Grenzwerte und Alarm

Fühlerverriegelung
Alle Fühlerdaten, die im EEPROM des Steckers gespeichert sind, lassen sich über eine gestaffelte Verriegelung vor ungewolltem Zugriff schützen.

5.1.2 Messung

Messwerte

Analogausgang und Skalierung
Jede Messstelle kann mit Analoganfang und Analogende so skaliert werden, dass der damit bestimmte Messbereich den ganzen Bereich der Balken- oder Liniengrafik oder eines Analogausgangs (2V, 10V oder 20mA) nutzt. Auf den Analogausgang kann der Messwert jeder Messstelle oder auch ein Programmierwert ausgegeben werden.
5. Einführung

Messfunktionen

Max- und Minwert
Bei jeder Messung wird der Maximal- und Minimalwert mit Zeit und Datum erfasst und abgespeichert. Diese Werte können angezeigt, ausgedruckt und gelöscht werden.

Mittelwert
Der Messwert kann über Mittelung gleitend gedämpft oder manuell über einen bestimmten Zeitraum, Zyklus oder Einzelmessungen gemittelt werden.

5.1.3 Ablaufsteuerung
Um die Messwerte aller angesteckten Fühler digital zu erfassen, ist eine laufende Messstellenabfrage mit einer zeitlichen Ablaufsteuerung zur Messwertausgabe erforderlich. Dafür steht ein Ausgabezyklus und, wenn Schnelligkeit gefordert, die Messrate selbst zur Verfügung. Die Messung kann über die Tastatur, die Schnittstelle, ein externes Triggersignal, die Echtzeituhr oder Grenzwertüberschreitungen gestartet und gestoppt werden.

Zeit und Datum
Echtzeituhr mit Datum oder reine Messzeit dienen zur exakten Protokollierung jeder Messung. Zum Starten oder Stoppen einer Messung sind Anfangszeit, -datum und Endezeit, -datum programmierbar.

Zyklus
Der Zyklus ist programmierbar zwischen 1 s und 59 h, 59 min, 59 s. Er ermöglicht die zyklische Ausgabe der Messwerte auf die Schnittstellen oder in den Speicher, sowie eine zyklische Mittelwertberechnung.

Druckzyklusfaktor
Mit dem Druckzyklusfaktor kann die Datenausgabe von bestimmten Kanälen nach Bedarf eingeschränkt und so die Datenflut besonders bei der Messwertspeicherung begrenzt werden.

Mittelwert über Messstellenabfragen

Messrate
Beim ALMEMO® 5690-2M werden alle Messstellen mit der Messrate (2.5, 10, 50 oder 100 M/s) abgefragt. Um eine hohe Aufzeichnungsgeschwindigkeit zu erreichen, ist es möglich, alle Messwerte mit der Messrate im Speicher abzulegen und/oder auf die Schnittstelle auszugeben.

16 ALMEMO® 5690-2M
Funktionen des ALMEMO 5690-2M

Messwertspeicher
Zur Speicherung der Messwerte gibt es 2 Möglichkeiten:

Nummerierung der Messungen
Durch Eingabe einer Nummer sind einzelne Abfragen oder ganze Messreihen identifizierbar und können selektiv aus dem int. Speicher ausgelesen werden.

Steuerausgänge
Über Tastatur und Schnittstelle sind bis zu 4 Ausgangsrelais und Analogausgänge individuell ansteuerbar.

Bedienung

Ausgabe

Vernetzung
Alle ALMEMO®-Geräte sind adressierbar und lassen sich durch einfaches Aneinanderstecken mit Netzwerkkabeln oder bei größeren Entfernungen mit RS422-Netzverteilern einfach vernetzen.

Software
6. INBETRIEBNAHME

Fühleranschluss: Fühler an die Buchsen M0 bis M8 (6c) anstecken s. 8.
Stromversorgung: mit Netzadapter an Buchse DC (6g) s. 7.3, 7.1
Einschalten: Taste ON PROG (3) auf der Frontseite drücken s. 7.5

Automatische Anzeige des letzten Messmenüs s. 11.

Menüauswahl MESS-Menüs: aufrufen mit Taste:
 z.B. Menü Standardanzeige wählen s. 10.1
Menü aufrufen mit Taste:

Messstelle anwählen (s. 11.1.1) mit Tasten:

Funktion Max-Minwert wählen (s. 10.4) mit:
 Max-Minwerte löschen s. 11.1.2

Messwert- oder Speicherausgabe über Schnittstelle:
 - Peripheriegerät mit Datenkabel an Buchse A1 (6f) anschließen s. Hb. 5.2
 - Am Peripheriegerät 9600bd, 8 Datenbit, 1 Stopbit, keine Parität einstellen

Einmalige Ausgabe/Speicherung s. 11.3.1
Zykloische Messung: Zyklauswählen: Zyklaus eingeben (hh:mm:ss) s. 10.5
 Ausgabeformat Liste ´´´´´´µµµµ¶
 Programmierung beenden
 Zykloische Messung starten, stoppen s. 11.3.2

Speicher ausgeben auf Drucker oder Rechner:
 Funktion Speicher Frei wählen mit:
 Speicher ausgeben s. 12.2.6
 Speicher löschen s. 12.2.6
7. STROMVERSORGUNG

Zur Stromversorgung des Messgerätes haben Sie folgende Möglichkeiten:

- Netzadapter 12V/2.5A: ZB 1212-NA9
- Galv. getr. Stromversorgungskabel (10..30V DC, 0.25A): ZB 3090-UK
- Galv. getr. Stromversorgungskabel (10..30V DC, 1.25A): ZB 3090-UK2
- Einschub NiMH-Akku 9.6V/1600mAh: ES 5690-AP

Siehe Produktübersicht im Anhang 14. und folgende Kapitel.

7.1 Netzbetrieb

Zur Stromversorgung des Gerätes dient serienmäßig der mitgelieferte Netzadapter ZB 1212-NA9 (12V/2.5A). Er wird an die Anschlussbuchse DC (6g) angeschlossen und durch Drehung nach rechts verriegelt.

Bei Bedarf kann über die blanke Buchse (6h) das Gerät geerdet werden (z.B. Schutzleiteranschluß).

7.2 Externe Gleichspannungsversorgung

An die Buchse DC (6g) kann auch eine andere Gleichspannung von 10..13V (min. 200mA) angeschlossen werden. Zum Anschluss gibt es das Kabel ZB 5090-EK mit 2 Bananensteckern. Wird jedoch eine galvanische Trennung zwischen Stromversorgung und Messwertgebern oder ein größerer Eingangsspannungsbereich 10...30 V benötigt, dann ist das galv. getrennte Versorgungskabel ZB 3090-UK (bzw. ZB 3090-UK2 am Akkueinschub) erforderlich. Das Messgerät kann damit auch in 12V- oder 24V-Bordnetzen betrieben werden.

7.3 Akkubetrieb (Nur mit Einschub ES5690-AP)

Für einen autarken Betrieb ist die Anlage mit dem Zusatzeinschub AP mit 8 NiMH-Akkus (9.6V/1600mAh) auszustatten. Dieser ermöglicht bei einem Stromverbrauch von ca. 40 mA eine Betriebszeit von ca. 40 Stunden. Zur Verlängerung der Betriebszeit bei Langzeitaufzeichnungen können Sie das Gerät im Sleep-Modus betreiben (s. 12.2.5). Die aktuelle Betriebsspannung können Sie im Menü Stromversorgung (s. 12.7) abfragen und damit die restliche Betriebszeit abschätzen. Wenn eine Restkapazität der Akkus von ungefähr 10% erreicht ist, erscheint das -Symbol in der Statuszeile des Displays blinkend und die Akkus sollten spätestens jetzt nachgeladen werden. Wenn die Akkus ganz entladen sind, schaltet sich das Gerät ab, um eine Tiefentladung zu vermeiden. Die erfassten Daten und die Uhrzeit bleiben aber erhalten (s. 7.6). NiMH-Akkus können mit der intelligenten Ladeschaltung problemlos bei jedem Ladezustand nachgeladen werden. Zum Laden der Akkus ist der Netzadapter ZB 1212-NA9 (12V/2.5A) an die Buchse DC-A (5a) des Akkumoduls anzuschließen. Danach signalisiert das Lämpchens ´CHARGE´, dass die Akkus geladen werden. Nach ca. 3.5 Stunden sind die Akkus voll und das
7. Stromversorgung

Lämpchen erlischt wieder. Nach einiger Zeit wird nochmal nachgeladen und dann auf Erhaltungsladung umgeschaltet. Der Netzadapter kann so im Pufferbetrieb dauernd am Messgerät angeschlossen bleiben, ohne die Akkus zu überladen. Wenn Sie die Akkus nicht laden wollen, z.B. um bei Thermoelementmessung eine Erwärmung des Gerätes zu vermeiden, können Sie das Netzteil auch an der Buchse DC (6g) anschließen.

7.4 Fühlerversorgung
An den Klemmen – und + im ALMEMO®-Stecker steht bei Netzbetrieb eine Fühlerversorgungsspannung von ca. 12V (400mA) zur Verfügung (selbstheilende Sicherung 500 mA). Bei Akkubetrieb liegt die aktuelle Akkuspannung (9..11V) an. Andere Spannungen (15V, 24V oder Referenzen für Potentiometer und Dehnungsmessstreifen) sind mit speziellen Steckern erreichbar (s. Hb. 4.2.5/6).

7.5 Ein-, Ausschalten, Neuinitialisierung
Zum Einschalten des Gerätes betätigen Sie die Taste ON-PROG (3), zur Kontrolle leuchtet die Lampe ´ON´.
Zum Ausschalten ist die Taste ON-PROG länger zu drücken (ca. 1s). Die Echtzeituhr läuft weiter, und alle gespeicherten Werte und Einstellungen bleiben erhalten (s. 7.6).
Zieht das Gerät auf Grund von Störeinflüssen (z.B. Elektrostatische Aufladungen oder Netzausfall) ein Fehlverhalten, dann sollte zuerst versucht werden, das Problem nur mit Aus- und wieder Einschalten zu lösen.

7.6 Datenpufferung
8. ANSCHLUSS DER MESSWERTGEBER

8.1 Messwertgeber

8.2 Messeingänge und Zusatzkanäle

Das Messkreiskarte MM-A9 besitzt 9 Eingangsbuchsen (6c), denen zunächst die Messkanäle M0 bis M8 zugeordnet sind. ALMEMO®-Fühler können jedoch bei Bedarf bis zu 4 Kanäle bereitstellen, sodass sich bei 9 Eingangsbuchsen insgesamt 36 Kanäle ergeben. Die Zusatzkanäle sind vor allem bei Feuchtefühlern mit 4 Messgrößen (Temperatur/Feuchte/Taupunkt/Mischungsverhältnis) oder für Funktionskanäle nutzbar. Bei Bedarf ist ein Sensor auch mit mehreren Bereichen oder Skalierungen programmierbar oder, wenn es die Anschlussbelegung erlaubt, können auch 2 bis 3 Sensoren in einem Stecker kombiniert werden (z.B. rH/Ntc, mV/V, mA/V u.ä.). Die zusätzlichen Messkanäle in einem Stecker liegen jeweils um 10 höher (der erste Fühler hat z.B. die Kanäle M0, M10, M20, M30, der zweite die Kanäle M1, M11, M21, M31 usw.).

Geräteinterne Kanäle:

Neu sind bei diesem Gerät 4 weitere Zusatzkanäle im Gerät. Der erste davon M9 ist standardmäßig als Differenzkanal M1 – M0 programmiert. Er erscheint aber nur, wenn zwei Fühler mit gleicher Dimension und Kammastelle in den Messstellen M0 und M1 vorhanden sind. Alle 4 Kanäle sind jedoch mit beliebigen anderen Funktionskanälen (z.B. U-Bat, VK, Mittelwert, Volumenstrom etc.) programmierbar (s. Hb. 6.3.4). Als Bezugskanäle werden standardmäßig für Mb1 = M1 und Mb2 = M0 eingesetzt, sind aber änderbar (s. Hb. 6.3.4).

Vorteil der geräteinternen Kanäle: bei Einsatz mehrerer Fühler für die gleiche Anwendung müssen die Fühler nicht unprogrammiert werden und können getauscht werden, ohne die Funktionskanäle zu verlieren. Hängt die ganze Applikation jedoch nur an einem Fühler, dann ist eher die Programmierung im Fühler sinnvoll.
8. Anschluss der Messwertgeber

Bei der Messkreiskarte ergibt sich damit folgende Kanalbelegung:

8.3 Erweiterung der Messstellen
Zur Erweiterung der Messstellen sind bis zu 9 passive Messstellenumschalterkarten einsetzbar, die Gesamtzahl der Messkanäle ist jedoch auf maximal 100 begrenzt.
Die Mastermesskreiskarte MM-A09 (6) kann zusätzlich bis zu 9 Messstellenumschalterkarten mit jeweils 10 Eingängen (7j) ansteuern, die wieder durch photovoltaischen Relais umgeschaltet werden. Um Fühler- und Kanalzahl jedes Einschubs den individuellen Anforderungen anpassen zu können, ist die Messstellennummerierung und damit die Kanalzahl der Einschübe durch einen Kodierschalter (7k) konfigurierbar. Der Kodierschalter legt die Messstellennummer der ersten Messstelle des jeweiligen Einschubs und damit auch die Kanalzahl des vorherigen Einschubs fest. Sinnvollerweise muss diese Messstellennummer also mindestens 10 bzw. maximal 40 Messstellen höher eingestellt werden, als der vorherige Einschub, entsprechend wird die Kanalzahl des vorherigen Einschubs auf 10 bis 40 Messstellen begrenzt. Mehrkanalige Fühler sollten deshalb möglichst in einem Einschub zusammengefasst werden. 99 Fühler können mit 10 Einschüben nur erfasst werden, wenn die Kanalzahl jedes Einschubs auf 10 begrenzt wird, d.h. die Messstellennummer jeweils 10 höher eingestellt wird. Die Zeit einer Messstellenabfrage erhöht sich proportional zu der Zahl der Meßkanäle.

2. Die Messstellenumschalterkarte U-MU (8) erfordert nur 1 Steckplatz, sie hat ebenfalls 10 Eingänge, die auf eine 64polige Buchsenleiste geführt sind. Der Anschluß der Fühler erfolgt über einen 10-fach-Stecker ZA 5690-MU mit jeweils 4 Schraubklemmen A, B, C und D ebenso wie bei jedem einzel-

Optional gibt es die Karten UKSI mit Shunts für 20mA-Signale (Anschluss an Klemmen A (-) und B (+), Bereiche ‘mA’ oder ‘%’) oder die Karten UKSU mit Teilern für 10V-Signale (Anschluss an Klemmen A (-) und C (+), Bereich ‘mV’ ‘2’, Komma 3).

Für Thermoelemente ist der Einschub nur geeignet, wenn sie mit Kupferdrähten über einen isothermen Block mit eingebautem Vergleichsstellenfühler angeschlossen werden (s. Hb. 6.7.3).
8. Anschluss der Messwertgeber

8.4 Potentialtrennung

Daten- und Triggerkabel sind zusätzlich mit Optokopplern isoliert.
9. RELAIS-TRIGGER-ANALOG-EINSCHUB

Als universelles Trigger-Ausgabe-Interface gibt es speziell für die Anlagen ALMEMO® 5690 den Relais-Trigger-Analog-Einschub ES 5690-RTA5 mit bis zu 10 Interfaceelementen (Standard 4 Halbleiterrelais und 2 Triggereingänge, optional bis zu 10 Halbleiterrelais oder 10 galv. getrennte Analogausgänge). Max. bis zu 7 Einschübe werden einfach auf einen freien Steckplatz vorzugsweise im Anschluss an die Messeingänge gesteckt und beim Einschalten der Anlage automatisch erkannt. Alle 10 Interfaceelemente jedes Moduls sind als Ports P0 bis P9 im Menü AUSGANGSMODULE einzeln anwählbar und konfigurierbar (s. 12.6.2).

Anschlussbild:

9.1 Stromversorgung

Die Versorgung des Adapters mit einer Spannung von 9..12V DC erfolgt durch die Anlage. In der Standardausführung werden nicht mehr als 20mA benötigt. Nur mit optionalen Analogausgängen, insbesondere mit Stromausgängen, muss der max. Versorgungsstrom pro Einschub beachtet werden (s. 9.3).

9.2 Interfaceelemente und Optionen

Standardmäßig sind die Buchsen P0/1 und P2/3 mit 4 Halbleiterrelais Schließer und P8/9 mit 2 Triggereingänge bestückt. Mit der Option OA 8006-OH2 ist jedes Relaispaar auch mit 2 zusätzlichen Öffnern erhältlich. Außerdem sind mit der Option OA 8006-SH2 jeweils 2 weitere Relais (max. 10), incl. ALMEMO®-Klemmstecker nachrüstbar. Alternativ können zunächst die Buchsen P4/5 und P6/7, aber auch alle anderen mit Option OA 8006-R02 mit Analogausgängen 0..10V oder 0..20mA galv. getrü. incl. ALMEMO®-Klemmstecker ausgerüstet werden.
9.2.1 Relais

Die **Ausgangsrelais** sind von der Anlage automatisch bei Alarm oder über Schnittstellenbefehle (s. Hb. 6.10.10) ansteuerbar. Die Funktion jedes Relais kann durch Konfiguration beliebig eingestellt werden (s. 12.6.2). Die Zuordnung von Grenzwert zu Relais ist mit dem Gerät im Fühler programierbar (s. 12.4.3). Bei jeder Relaisaktivierung ertönt standardmäßig ein kurzer Alarmton. Die Relaisansteuerung kann durch Invertierung so konfiguriert werden, dass die Relais normal anziehen und bei Alarm oder Stromausfall abfallen.

In folgenden Fällen ist die Nachschaltung eines Netzspannungs-Wechslер-Relais sinnvoll (z.B. Phoenix PLC-RSC-24DC/21, 250V 6A):
- wenn Strom- oder Spannungsbelastung größer ist als 50V, 0.5A,
- zur Trennung von der Netzspannungsseite,
- zur Realisierung eines Alarms bei Ausfall der Steuerseite (s. Bild)

9.2.2 Triggereingänge

Die Triggerfunktion (standardmäßig Starten oder Stoppen einer Messung) ist ebenfalls frei konfigurierbar (s. 12.6.2).

9.2.3 Analogausgänge

Optional kann der Einschub auch mit galvanisch getrennten **Analogausgängen** ausgerüstet werden, die wahlweise folgende Signale bieten.

<table>
<thead>
<tr>
<th>Option</th>
<th>Ausgangssignal</th>
<th>Steigung</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA 8006-R02</td>
<td>0.000 V ... +10.000 V</td>
<td>0.5 mV/Digit</td>
</tr>
<tr>
<td></td>
<td>0.000 mA ...+20.000 mA</td>
<td>1 µA/Digit</td>
</tr>
</tbody>
</table>

Der Ausgabewert entspricht normalerweise dem Messwert einer wählbaren Messstelle. Alternativ kann der Analogwert auch als Steuergröße über die Schnittstelle vorgegeben werden (s. Hb. 6.10.7). Das Ausgangssignal ist jeweils als Normausgang 0-10V, 0-20mA, 4-20mA von beliebigen Teilmessbereichen programmierbar (s. 12.4.4, 12.6.3).
9.2.4 Anschluss der Peripherie
Die Peripherie wird über die mitgelieferten ALMEMO-Schraubklemmstecker nach folgendem Schema angeschlossen:

<table>
<thead>
<tr>
<th>Klemmen</th>
<th>P0/1 Relais</th>
<th>P2/3 Relais</th>
<th>P4/5 Analog (opt.)</th>
<th>P6/7 Analog (opt.)</th>
<th>P8/9 Trigger</th>
</tr>
</thead>
<tbody>
<tr>
<td>y1</td>
<td>R1 Öffner (opt.)</td>
<td>R3 Öffner (opt.)</td>
<td>(opt.)</td>
<td>(opt.)</td>
<td>U+</td>
</tr>
<tr>
<td>y2</td>
<td>R1 Common</td>
<td>R3 Common</td>
<td>AO5 +</td>
<td>AO7 +</td>
<td>TR9+</td>
</tr>
<tr>
<td>y3</td>
<td>R1 Schließer</td>
<td>R3 Schließer</td>
<td>AO5 -</td>
<td>AO7 -</td>
<td>TR9 -</td>
</tr>
<tr>
<td>x3</td>
<td>R0 Schließer</td>
<td>R2 Schließer</td>
<td>AO4 -</td>
<td>AO6 -</td>
<td>TR8 -</td>
</tr>
<tr>
<td>x2</td>
<td>R0 Common</td>
<td>R2 Common</td>
<td>AO4 +</td>
<td>AO6 +</td>
<td>TR8+</td>
</tr>
<tr>
<td>x1</td>
<td>R0 Öffner (opt.)</td>
<td>R2 Öffner (opt.)</td>
<td></td>
<td></td>
<td>U -</td>
</tr>
</tbody>
</table>

9.2.5 Inbetriebnahme
1. Relais-Einschub in freien Steckplatz der ALMEMO®-Anlage anstecken, damit stehen die eingebauten Interfacelemente als Port P30 bis P39 zur Verfügung.
2. Peripheriegeräte an Klemmstecker anschließen und am Relais-Einschub an die entsprechenden Portbuchsen anstecken s. 9.2.4.
4. Alle Programmierfunktionen können entweder über die Gerätetastatur im Menü Ausgangsmodule (s. 12.6.2) oder mit der Software AMR-Control oder über Terminalbefehle (s. Hb. 6.10.9.2 u. 6.10.10) durchgeführt werden.

9.3 Technische Daten
Relais: Halbleiterrelais 1 Ohm, Belastbarkeit: 50V, 0.5A
Triggereingänge: Optokoppler 4..30V, Eingangsstrom 2mA
Analogausgänge: galv. getrennt wahlweise
 OA 8006-R02
 0.00 V ...+10.0 V 0.5 mV/Digit Bürde > 100kΩ
 0.0 mA ...+20.0 mA 1 µA/Digit Bürde < 500Ω
Genauigkeit: ± 0.1% v. Ew.
Temperaturdrift: 10 ppm / K
Zeitkonstante: 100 us
Spannungsversorgung: 9..12V DC vom Messgerät
Stromverbrauch: Standard: ca. 10..20mA
 Je 2 Analogausgänge: ca. 15mA + 1.75 x I_{OUT}
Gehäuse: 19"-Einschub 8TE
10. ANZEIGE und TASTATUR

10.1 Anzeige und Menüwahl
Auf der Grafikanzeige (1) stehen zunächst 3 Auswahlmenüs zur Verfügung:

1. **Mess-Menüs** s. 11
 9 Mess-Menüs stellen Mess- und Funktionswerte auf verschiedene Weise dar.
 3 ´User´-Menüs U1, U2, U3 sind vom Anwender frei konfigurierbar (s. 11.7).

2. **Programmier-Menüs** s. 12
 Hier programmieren Sie die erforderlichen Einstellungen des Gerätes und der Fühler, sowie die Ablaufsteuerung des Datenloggers.

3. **Assistent-Menüs**
 Sie erleichtern Programmierung und Messung bei speziellen Anwendungen.

Evtl. Menüauswahl aufrufen mit der Taste:
Evtl. gewünschte Menüauswahl anwählen mit Taste:
Display-Beleuchtung einschalten in 3 Stufen (s. 12.5.5)
Ausschalten des Gerätes mit Taste:
 oder Taste:
Anwahl der Menüs mit den Tasten:
Aufruf des angewählten Menüs mit Taste:
Zurück zum letzten Messmenü mit einem Tastendruck:
Zurück zum letzten Programmiermenü nochmal Taste:
Zurück zur Menüauswahl kommt man mit der Taste:

Die Gerätebezeichnung in der Kopfzeile können Sie ebenso programmieren (s. 12.5.1), wie die Menütitel der Usermenüs (s. 11.7)
10.2 Kontrollsymbole im Display und Kontroll-LED’s

Kontrolle des Gerätezustandes
Kontinuierliche Messstellenabfrage: Statuszeile
Messung gestoppt oder gestartet: LED’s
Messstellenabfrage gestartet mit Datenspeicherung: REC
Messstellenabfrage gestartet mit Schnittstellenausgabe: COM
Anfangs- bzw. Endezeit der Messung programmiert: START oder REC
Zustand der Relais (ext. Ausgangsmodul) aus oder ein: COM oder START
Tastaturbedienung durch Verriegelung eingeschränkt: LOCKED
Displaybeleuchtung eingeschaltet oder Pause: REC oder R--
Batterie-, Akkuladezustand: voll, halb, leer: COM
Symbole zur Kontrolle des Messwertes (s.o.)
Kein Fühler, Messstelle deaktiviert: ¯
Messwert geändert mit Fühlerkorrektur oder Skalierung: ¯
Mittelwertbildung läuft: AVG
Ausgabefunktion Diff, Hi, Lo, M(t), Alarm (s. 12.4.5): D, H, L, M, A
Kompensation C: T Temperatur, P Luftdruck, laufend: ◌ P. (, blinkt)
Grenzwertüberschreitung Max oder Min: ▲ oder ▼ blinkt
Messbereichsüberschreitung: Anzeige Maximalwert: O blinkt ALARM
Messbereichsunterschreitung: Anzeige Minimalwert: U blinkt ALARM
Fühlerbruch/Fühlerspannung Lo: Anzeige ¯-.-.-.: B blinkt / L blinkt ALARM

10.3 Funktionstasten
Die Funktion der Tasten F1 bis F4 (3) kann in jedem Menü unterschiedlich sein. Sie wird in der untersten Zeile der Anzeige mit Kürzeln dargestellt (Softkey’s). Die Softkey-Kürzel werden in der Anleitung in spitze Klammern gesetzt, z.B. <START>.

Vor und neben dem Messwert gibt es Kontrollsymbole für den Messwert (s.u.).

In der Standardanzeige (s.r.) stehen folgende Tasten zur Verfügung:

Messstellenanwahl mit den Cursortasten (3) (M in der Mitte)
Starten einer zyklischen Messung:
Stoppen einer zyklischen Messung:
Einmalige manuelle Ausgabe/Speicherung aller Messwerte:
Ausgabe der Menüfunktionen über die Schnittstelle:
Zurück zur Menüauswahl:
10.4 Funktionsanwahl
Jedes Menü besteht aus einer Reihe von Funktionen, die im Betrieb u.U. bedient oder programmiert werden müssen.

Hilfen bei Anwahl der Funktionen:

Anwahl der Funktionen, der erste änderbare Parameter erscheint als inverser schwarzer Balken:
Zur Kontrolle erscheint in der Mitte der Softkey-Zeile:
Weiterspringen zur nächsten Funktion:
Je nach Funktion erhalten die Tasten F1 bis F3 die erforderliche Bedeutung, z.B. Maxwert Löschen
Messwert nullsetzen, Messwert abgleichen
Speicher ausgeben
Speicher löschen

10.5 Dateneingabe
Ist ein programmierbarer Parameter angewählt (s. 10.4), dann können Sie den Wert eingeben oder auch löschen.

Löschen der Programmierwerte
Zum Programmieren drücken Sie die Taste
Jetzt befinden Sie sich im Programmiermodus unter der ersten Eingabestelle blinkt der Cursor
Erhöhen der angewählten Ziffer mit
Erniedrigen der angewählten Ziffer
Vorzeichen wechseln bei Zahlenwerten
Anwählen der nächsten Stelle der Cursor blinkt unter der zweiten Ziffer
Zurückschalten zur vorherigen Stelle
Jede Stelle wird analog der ersten programmiert
Beenden der Dateneingabe
Abbrechen des Programmiervorganges
11. MESSEN ÜBER MESS-MENÜS

Nach dem ersten Einschalten meldet sich das Gerät mit dem Menü [Messstellenliste] (s. 11.5.3). Es bietet eine gute Übersicht über das ganze Messsystem. Hier können Sie überprüfen, ob Uhrzeit und Datum richtig eingestellt sind. Wenn nicht, dann besteht gleich die Möglichkeit, sie zu programmieren (s. 10.4 und 10.5). Außerdem sieht man bereits kontinuierlich die Messwerte aller angesteckten Fühler und Messkanäle. Mit den Cursor-Tasten ▲ oder ▼ können sogar weitere Zusatzfunktionen wie Kommentar, Bereich, Max- und Grenzwerte zugeordnet werden. Wenn Sie den Zyklustimer (s. 11.3.2) programmieren, können Sie mit der Taste <START> die erste Messung starten und die Messwerte zyklisch aufzeichnen. Ist ein Drucker oder Terminal angeschlossen, werden alle Werte auch online ausgegeben. Nach Anwahl der Kanäle lassen sich auch Messstellen programmieren. Zur Auswahl anderer Messwertmenüs drücken Sie die Taste <ESC>.

Menüauswahl
Zur bestmöglichen Darstellung der Messwerte und dazugehöriger Funktionswerte bei Ihrer Anwendung verfügt die Anlage 5690-2M über eine Reihe vorgefertigter Messmenüs. Sie werden in der Auswahl [Mess-Menüs] angewählt und unterscheiden sich durch die Anzahl der Messstellen (1 bis 20), durch die Darstellung der Messwerte in verschiedenen Zifferngrößen (4, 8, 12 mm), bzw. als Balken- oder Liniengrafik und die Zusammenstellung der Funktionen. Werden Ihre Anforderungen damit noch nicht erfüllt, dann können Sie aus über 50 Funktionen die 3 User-Menüs U1 bis U3 selbst zusammenstellen (s. 11.7).

Aufruf der Menü-Auswahl mit Taste:
Anwahl eines Menüs mit den Tasten:
Aufruf des angewählten Menüs mit Taste:

Die wichtigsten Funktionen zur Steuerung des Messablaufes sind bereits in den Messmenüs vorhanden und können dort direkt programmiert werden.
Zur speziellen Programmierung der Fühler und des Gerätes gibt es eigene [PROGRAMMIER-Menüs] und für besondere Funktionen [ASSISTENT-Menüs]. Sie werden angewählt mit den Tasten:
11. Messen über Mess-Menüs

11.1 Messen mit einer Messstelle

Standardanzeige

Das Menü [Standardanzeige] zeigt eine Messstelle in der größten Darstellung mit Messstelle, Kommentar und Dimension. Zur Kontrolle des Messwertzustandes dienen einige Symbole (s. 10.2). Die Funktionen Max- und Minwert sind in 11.1.2 beschrieben, Zyklus-Timer in 11.3.2 und Speicher in 11.3.3.

11.1.1 Anwahl einer Messstelle

Messkanal erhöhen mit der Taste:
Messkanal erniedrigen mit Taste:

11.1.2 Spitzenwertspeicher mit Uhrzeit und Datum

Aus den erfassten Messwerten jeder Messstelle wird laufend der höchste und der niedrigste Wert bestimmt und mit Uhrzeit und Datum abgespeichert. Zur Anzeige dieser Werte gibt es die unten aufgeführten Funktionen, zur Ausgabe Funktionskanäle (s. 12.3.10).

Das rechts dargestellte Menü [Überwachung] mit den Max-Min-Zeiten können Sie mit der Software AMR-Control einfach als User-Menü laden oder entsprechend selbst konfigurieren (s. 11.7).

Funktion Maximalwert:
Funktion Minimalwert:
Funktion Zeit und Datum vom Maximalwert:
Funktion Zeit und Datum vom Minimalwert:
Zum Löschen Funktion anwählen (s. 10.4):
Einzelwert löschen mit Taste:
Max-, Min- und Mittelwerte aller Kanäle löschen:
Durch die laufende Messung erscheint nach jedem Löschen sofort wieder der aktuelle Messwert. Die Spitzenwerte werden außerdem bei jedem Start einer Messung gelöscht, wenn das Gerät entsprechend konfiguriert ist (Standardeinstellung, s. 12.5.8). Eine zyklische Löschung wird durch Programmierung des Mittelmodus CYCL erreicht (s. 11.4.7).

11.2 Messwertkorrektur und Kompensation

11.2.1 Messwert nullsetzen
Eine nützliche Funktion ist es, den Messwert an bestimmten Orten oder zu bestimmten Zeiten nullsetzen zu können, um dann nur die Abweichung von diesem Bezugsuwert zu beobachten. Nach Anwahl der Funktion Messwert (s. 10.4) in einem beliebigen Menü zeigt Ihnen ein Hilfefenster alle Möglichkeiten der Messwertkorrektur. Mit den Tasten <ZERO>, PROG wird der angezeigte Messwert als Basiswert abgespeichert und damit auf Null gesetzt.

Funktion Messwert anwählen:
Funktion Messwert Nullsetzen:
 Ausführen mit Taste:
 Messwert:
 Basiswert:

Ist die Funktion verriegelt (s. 12.3.4), dann wird der Basiswert nicht im Stecker gespeichert, sondern nur temporär im RAM bis zum Ausschalten. Diese Funktion läßt sich mit dem Verriegelungsmodus 6 verhindern.

Solange nicht der tatsächliche Messwert, sondern die Abweichung vom Basiswert angezeigt wird, erscheint im Display das Symbol . Um den tatsächlichen Messwert wieder zu erhalten, muss der Basiswert gelöscht werden (s. 12.3.6).
11.2.2 Nullpunktabgleich
Viele Sensoren müssen einmalig oder in regelmäßigen Abständen justiert werden, um entsprechende Instabilitäten auszugleichen. Hierfür gibt es neben dem o.g. ‘Messwert nullsetzen’ einen eigenen Nullpunktabgleich, weil damit eine Skalierung nicht beeinflusst wird. In dieser Funktion wird der Nullpunktfehler nicht als Basis, sondern als Nullpunktkorrektur abgespeichert (s. 12.3.7).

Funktion Messwert anwählen:
Funktion Nullpunktabgleich mit Taste:
Ausführen mit Taste:
Messwert:
Nullpunkt:

Ist die Funktion größer 3 verriegelt (s. 12.3.4), meldet eine Hilfebox, dass die Funktion nur zum Abgleich momentan entriegelt werden kann, damit die Korrekturwerte dauerhaft im Stecker gespeichert werden.

Abgleich momentan entriegeln mit Taste:

Ist ein Basiswert programmiert, zeigt der Messwert nach dem Abgleich nicht Null, sondern den negativen Basiswert.

Bei Staudrucksonden wird der Nullpunktfehler immer vorübergehend, d.h. bis zum Ausschalten, in den Eichoffset geschrieben, auch wenn der Kanal verriegelt ist.

11.2.3 Fühlerabgleich bei chemischen Sensoren
Bei folgenden Sensoren gelangt man von der Funktion Messwert mit <ADJ> (s. 11.2.2) automatisch in das Assistentmenü Fühlerabgleich zum Zwei-punktabgleich von Nullpunkt und Steigung. Die entsprechenden Kalibrier-Sollwerte sind bereits eingetragen, können aber auch geändert werden:

<table>
<thead>
<tr>
<th>Sonde: pH-Sonde</th>
<th>Typ: ZA 9610-AKY</th>
<th>Nullpunkt: 7.00 pH</th>
<th>Steigung: 4.00 pH oder 10.00 pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leitfähigkeit:</td>
<td>FY A641-LF: 0.0</td>
<td>2.77 mS/cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY A641-LF2: 0.0</td>
<td>147.0 uS/cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY A641-LF3: 0.0</td>
<td>111.8 mS/cm</td>
<td></td>
</tr>
<tr>
<td>O₂-Sättigung:</td>
<td>FY A640-O2: 0.0</td>
<td>101 %</td>
<td></td>
</tr>
</tbody>
</table>

Bei Bedarf sind hier auch Temperatur und Luftdruck zur Kompensation eingebbar (s. 11.2.5, 11.2.6).
1. Kalibriermittel für Nullpunkt anlegen:
 Funktion Sollwert 1 anwählen:
 Nullpunktabgleich mit Taste:
 Der Abgleichmesswert wird festgehalten:
 Bei pH-Sonden können mit der Taste <CLEAR> die Standardwerte Basiswert 7.00 und Steigung -0.1689 wiederhergestellt werden.

2. Kalibriermittel für Steigung anlegen:
 Funktion Sollwert 2 anwählen:
 Steigungsabgleich mit Taste:
 Der Abgleichmesswert wird festgehalten:
 Die Steigung zeigt ungefähr:
 Der Steigungsfehler zeigt die Abweichung vom Nominalwert und damit den Zustand der Sonde:
 Wenn die Sensoren verriegelt sind, können sie mit der Taste <FREE> momentan entriegelt werden.

11.2.4 Zweipunktabgleich mit Sollwerteingabe
Im Menü U1 Messkorrektur ist auch bei anderen Fühlern ein Zweipunktabgleich möglich. Zusätzlich zum Nullpunktabgleich 11.2.2 wird die Steigung mit der Funktion Sollwert mit einem zweiten Messpunkt korrigiert. Der Korrekturfaktor wird auf Tastendruck automatisch bestimmt und als Faktor im Fühlerstecker abgespeichert.

1. Nullpunktabgleich
 Sensor in den Nullzustand bringen
 (Eiswasser, drucklos etc.),
 Messwert nullsetzen mit den Tasten (s. 11.2.2) <ZERO> / <ADJ>, PROG

2. Endwertabgleich
 Sensor auf einen definierten Sollwert bringen
 (kochendes Wasser, bekanntes Gewicht etc.)
 Bei ALMEMO-Kraftaufnehmern Kalibrierwiderstand zur Simulation des Kontrollwertes ein-, ausschalten (s.Hb. 3.6.2) <ON> bzw. <OFF>
 Sollwert in Funktion ´Sollwert´ eingegeben:
 Messwert in Funktion ´Sollwert´ abgleichen:
 Danach sollte der Messwert den Sollwert anzeigen.
 Ist der Fühler mit 4 verriegelt, wird der Korrekturfaktor als ´Faktor´ programmiert, ist die Verriegelung <= 3 oder mit der Taste <FREE> momentan entriegelt, wird der Korrekturfaktor als Steigungskorrektur programmiert (s. 12.3.7).
11.2.5 Temperaturkompensation
Fühler, deren Messwert stark von der Temperatur des Messmediums abhängt, sind meistens mit einem eigenen Temperaturfühler versehen, und das Gerät führt automatisch eine Temperaturkompensation durch (s. 12.3.9 Messbereichsliste ´m. TK´). Staudruck- und pH-Sonden sind aber auch ohne Temperaturfühler erhältlich. Bei Abweichung der Mediumstemperatur von 25°C treten dann folgende Messfehler auf:

<table>
<thead>
<tr>
<th>z.B. Fehler pro 10 °C:</th>
<th>Kompensationsbereich:</th>
<th>Fühler:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staudruck: ca. 1.6%</td>
<td>-50 bis 700 °C</td>
<td>NiCr-Ni</td>
</tr>
<tr>
<td>pH-Sonde: ca. 3.3%</td>
<td>0 bis 100 °C</td>
<td>Ntc oder Pt100</td>
</tr>
</tbody>
</table>

Eine Kompensation mit einer konstanten Temperatur ist durch Eingabe in der Funktion Temp-Komp. [z.B im Menü Messkorrektur] möglich:

Eingabe der Kompensationstemperatur in Funktion: Temp.Komp: CT 31.2°C

Eine **ständige Temperaturkompensation** mit externen Temperaturfühlern kann entweder über den Bezugskanal des zu kompensierenden Fühlers oder durch Konfiguration eines beliebigen Temperaturfühlers als Referenzfühler mit einem ´*T´ im Kommentar erfolgen (s. 12.3.2):

Wird die Temperatur gemessen, blinkt der Punkt T.: Temp.Komp: CT. 23.5°C

Abschaltung der autom. Temperaturkompensation durch Programmieren des Bezugskanals der Messstelle auf sich selbst.

11.2.6 Luftdruckkompensation
Einige Messgrößen hängen vom umgebenden Luftdruck ab (s. 12.3.9 Messbereichsliste ´m. LK´), sodass bei größerer Abweichung vom Normaldruck 1013 mbar entsprechende Messfehler auftreten:

<table>
<thead>
<tr>
<th>z.B. Fehler pro 100 mbar:</th>
<th>Kompensationsbereich:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rel. Feuchte Psychrometer</td>
<td>ca. 2%</td>
</tr>
<tr>
<td>Mischungsverhältnis kap.</td>
<td>ca. 10 %</td>
</tr>
<tr>
<td>Staudruck</td>
<td>ca. 5%</td>
</tr>
<tr>
<td>O₂-Sättigung</td>
<td>ca. 10%</td>
</tr>
</tbody>
</table>

insbesondere beim Einsatz in entsprechender Meereshöhe sollte deshalb der Luftdruck berücksichtigt werden (ca. -11mb/100m ü.N.N.). Er ist entweder programmierbar (s. 12.5.6) oder kann mit einem Sensor gemessen werden (Referenzsensor mit Kommentar ´*P´ versehen s. Hb. 6.7.2).

Die Funktion Luftdruck kann in jedes Anwender-Messmenü eingebunden oder im Standardmenü Gerätekonfiguration bedient werden:

Luftdruck eingeben in Funktion ´Luftdruck´: Luftdruck: CP. 1013. mb

Bei jedem Reset wird der Luftdruck auf 1013 mb eingestellt. Er kann mit der üblichen Dateneingabe (s. 10.5) auf den aktuellen Wert eingestellt werden. Wird der Luftdruck in einem Meßmenü zur Kompensation verwendet, erscheint
Messwertkorrektur und Kompensation

das Symbol ‘CP’, wird er gemessen, dann erscheint auch hier der Messwert und hinter dem ’CP’ blinkt ein Punkt.

Beachten Sie bitte, dass nach dem Abziehen eines Referenzensors wieder der Normaldruck 1013 mbar verwendet wird.

11.2.7 Vergleichsstellenkompensation
Die Vergleichsstellenkompensation (VK) von Thermoelementen erfolgt normalerweise ganz automatisch. Um auch unter schwierigen thermischen Bedingungen (Wärmeinstrahlung) bei 9 Buchsen ein Höchstmaß an Genauigkeit zu erreichen, werden bei diesem Gerät die Buchsenträgertemperaturen mit zwei Präzisions-Ntc-Sensoren in den Messbuchsen M0 und M8 erfaßt und mit linearer Interpolation berechnet. Die mittlere Vergleichsstellenkompensation wird in der Gerätekonfiguration als Betriebsparameter (s. 12.5.8) angezeigt. Sie läßt sich bei Bedarf als Gerätetemperatur mit einem Funktionskanal ‘CJ’ (s. 12.3.10) in die Messwerterfassung aufnehmen.

Die Vergleichsstellenkompensation kann aber auch durch einen externen Messfühler (Pt100 oder Ntc) in einem Isothermenblock ersetzt werden (s. Hb. 6.7.3), wenn er vor den Thermoelementen angeordnet ist und im Kommentar (s. 12.3.2) auf den ersten 2 Stellen ein ‘*J’ programmiert ist. In diesem Mode wird automatisch auf ‘kontinuierliche Messstellenabfrage’ umgeschaltet!

Für besondere Ansprüche (z.B. bei Thermoelementen, für die es keine Stecker mit Thermokontakten gibt oder bei hohen Temperaturunterschieden durch Wärmeinstrahlung) gibt es Stecker mit jeweils einem eingebauten Temperaturfühler (ZA 9400-FSx) zur Vergleichsstellenkompensation. Sie können problemlos für alle Thermoelementarten eingesetzt werden, benötigen aber 2 Messkanäle. Im Kommentar des Thermoelements ist auf den ersten 2 Stellen ein ‘#J’ programmiert, das dafür sorgt, dass der im Stecker eingebaute Temperaturfühler als Vergleichsstellenfühler verwendet wird.

11.3 Messstellenabfragen und Ausgabe
Messstellenabfragen dienen dazu, die Messwerte aller Messstellen zu bestimmten Zeitpunkten manuell oder über einen Zeitraum zyklisch zu erfassen, d.h. zu speichern oder über Drucker oder Rechner aufzuzeichnen (s. Hb. 6.5).

Dafür eignet sich z.B. das Menü Datenlogger:

12:34:56 Dat.: 01.01.04
Zyklus-Timer: 00:00:30 n$"S
Speicher Frei: 508.3 kB
Nummer: 01-001 A
01: 244.5 °C
NiCr Temperatur
Grenzwert Max: 250.0 °C
Maxwert: 245.7 °C
Grenzwert Min: 230.0 °C
Minwert: 224.1 °C

START MANU M PRINT ESC
11.3.1 Einmalige Ausgabe/Speicherung aller Messstellen
Einmalige manuelle Messstellenabfragen zur Erfassung der momentanen Messwerte aller aktiven Messstellen (s.Hb. 6.5.1.1) werden mit der Taste <MANU> ausgelöst. Soll die echte Uhrzeit erscheinen, dann muss sie vorher eingegeben werden (s. 12.1.1). Das Ausgabeformat ist in Funktion Zyklus-Timer einstellbar (s. 11.3.2).

Einmalige manuelle Messstellenabfrage:
In der Statuszeile erscheinen zur Kontrolle kurzzeit

Der Startpfeil leuchtet kurz auf und geht dann wieder aus

Bei einer Datenausgabe über die Schnittstelle leuchtet

Werden Messwerte gespeichert (s. 12.1.2), erscheint

Bei jedem weiteren Tastendruck werden die Messwerte gleichermaßen mit der entsprechenden Messzeit verarbeitet.

11.3.2 Zyklische Ausgabe/Speicherung aller Messstellen
Für zyklische Messwertausgaben (s. Hb. 6.5.1.2) und Aufzeichnungen sind der Zyklus und das Ausgabeformat zu programmieren. Die Messung wird mit der Taste <START> gestartet und mit der Taste <STOP> gestoppt. Bei jedem Start einer Messung werden die Max-, Min- und Mittelwerte aller Messstellen gelöscht, wenn das Gerät entsprechend konfiguriert ist (Standardeinstellung, s. 12.5.8).

Die Funktion Zyklus-Timer zeigt den Zyklus, solange keine Messung gestartet ist. Nach Anwahl der Funktion (s. 10.4), kann man den Zyklus direkt eingeben (s. 10.5). Nach dem Start sieht man den Timer herunterzählen bis zum nächsten Zyklus.

Funktion Zyklus-Timer:
Zyklus (hh:mm:ss), Speicher ein, Format Liste

Mit der Taste <FORM> stellen Sie am schnellsten das gewünschte Ausgabeformat (Druckbilder s. Hb. 6.6.1) ein.

Format ändern:
Format Spalten nebeneinander ‘n’:
Format ändern:
Format Tabelle ‘t’:

Zyklische Messstellenabfrage starten mit Taste:<START>

In der Statuszeile erscheinen zur Kontrolle jetzt folgende Symbole kontinuierlich, d.h. solange die Messung läuft:

Der Startpfeil leuchtet

Bei einer Datenausgabe über die Schnittstelle leuchtet

Werden Messwerte gespeichert (s. 12.1.2), erscheint

Zyklische Messstellenabfrage stoppen mit Taste:<STOP>
11.3.3 Speicherplatz, Speicher ausgeben und löschen
In der Funktion **Speicher Frei** sehen Sie bei Messwertaufzeichnungen ständig den noch zur Verfügung stehenden Speicherplatz. Durch Anwahl dieser Funktion erreichen Sie zwei Softkey’s zum direkten Ausgeben und Löschen des Speichers. Das Ausgabeformat entspricht der Einstellung im Zyklus (s. 11.3.2 und 12.1.2)

Funktion **Speicher Frei** z.B.:
- Speicher ausgeben (s. 12.2.6):
- Speicher löschen:

Speicher Frei: 0378.4 kB

11.3.4 Menüfunktionen ausgeben
Jedes Messwertmenü können Sie mit allen dargestellten Funktionen auf einen Drucker oder Rechner über die Schnittstelle ausgeben (Anschluss der Peripheriegeräte s. Hb. 5.2). Haben Sie die Standardanzeige aufgerufen und drücken die Taste **<PRINT>**, dann wird z.B. folgendes Protokoll ausgedruckt:

Messwertmenü ausdrucken: **<PRINT>**

Messstelle, Messwert, Bezeichnung
- 01: +0023.5 °C Temperatur
- MAXIMALWERT: 01:+0020.0 °C
- MINIMALWERT: 01:-0010.0 °C
- DRUCKTIMER: 00:01:23

Speicherplatz insgesamt, frei in kB
- SPEICHER:S0512.1 F0324.4 A

Das Protokoll der einzelnen Funktionen ist in Kap. 6.6.1 aufgeführt.
11. Messen über Mess-Menüs

11.3.5 Messwertdarstellung als Liniengrafik
Im Menü **Liniengrafik** wird der Messwert des angewählten Kanals nach dem Start einer Messung als Liniengrafik mit 100x120 Punkten dargestellt. Die Kurve schiebt sich kontinuierlich von rechts nach links, die zeitliche Auflösung wird dabei durch den **Zyklus** bestimmt, bei jeder Abfrage ein Punkt. Daraus ergibt sich die Zeitangabe für die ganze t-Achse in (Tagen) Std:Min unten rechts. Oben rechts erscheint die Uhrzeit. Die Kurve wird bei laufender Messung auch aktualisiert, wenn man das Menü verlässt (Angewählte Messstelle nicht ändern!).

Grenzwerte, soweit aktiviert, werden als punktierte Linien eingetragen.

Zur Einstellung des Anzeigebereiches in der y-Achse dienen die Funktionen **Analog-Anfang** und **Analog-Ende** im Menü **Spezialfunktionen** (s. 12.4.4). Sie können mit der Taste **PROG** auch direkt an der Achse eingegeben werden.

Messwert als Liniendiagramm darstellen:
Im Menü **Zeiten - Zyklen** Zyklus eingeben.
Zeitachse 120 x 5s = 10Min:
Messkanal anwählen mit den Tasten:
Skalierung der y-Achse mit Taste:
Analogende am oberen Ende:
Wert ändern (s. 10.5) mit den Tasten:
Analoganfang am unteren Ende dto.:
Eingabe beenden:
Messung starten:
Messung stoppen:

Während der Messung ist die Kanalumschaltung gesperrt!
Bei jedem Start und bei jeder Kanalumschaltung wird die Liniengrafik gelöscht!
11.4 Mittelwertbildung

Der **Mittelwert** des Messwertes wird für eine Reihe von Anwendungen benötigt:
z.B. Beruhigung eines stark schwankenden Messwertes (Wind, Druck etc.)
 Die mittlere Strömungsgeschwindigkeit in einem Lüftungskanal
 Stunden- oder Tagesmittelwerte von Wetterwerten (Temp., Wind etc.)
 dto. von Verbrauchswerten (Strom, Wasser, Gas etc.)

Der Mittelwert šM̅ für Messwerte ergibt sich, wenn man eine ganze Reihe
von Messwerten Mᵢ aufsummieren und durch die Anzahl N der Messwerte teilt:

\[\overline{M} = \frac{\sum M_i}{N} \]

Im ALMEMO 5690-2M gibt es eine Reihe von
verschiedenen Mittelwertmodi:
Messwertdämpfung des angewählten Kanals
mit einem gleitenden Mittelungsfenster, eine
Mittelwertbildung über örtliche oder zeitliche
Einzelmessungen (auch als Netzmessung
nach VDE), eine Mittelwertbildung über die
gesamte Messzeit, über die Zyklen oder über
mehrere Messstellen.
Für alle Modi können Sie ein eigenes Assis-
tent-Menü **Mittelwertbildung** aufrufen, um
die nötigen Parameter einzugeben und die
Bedienung über Hilfefenster zu erlernen.

Messmenü Mittelwert:
Die meisten Funktionen zur Mittelwertbildung
können aber auch direkt in einem Messmenü
z.B. dem ´User-Menü´ **U2 Mittelwert** ausge-
führt werden. Die Bedienung der verschiede-
enen Modi werden bei der Programmierung
des Mittelmodus mit Hilfefenstern erklärt, z.B.

Mittelwertbildung: CONT
- über ganze Messung
 mit Taste: START/STOP
- über man. Einzelmessungen
 mit Taste: MANU

Zur Berechnung des Volumenstroms aus mitt-
tlerer Geschwindigkeit und Querschnitt eines
Strömungskanals gibt es sowohl ein ´User-
Messmenü´ **U3 Volumenstrom** (s. 11.4.9), als
auch ein Assistent-Menü **Volumenstrom**.
11. Messen über Mess-Menüs

11.4.1 Messwertdämpfung durch gleitende Mittelwertbildung
Die erste Möglichkeit der Mittelwertbildung betrifft ausschließlich den Messwert des angezeigten Kanals und dient dazu, bei unruhigen Messwerten, z.B. bei Strömungsmessungen mit Turbulenzen, die Messwerte durch gleitende Mittelwertbildung über ein Zeitfenster zu dämpfen bzw. zu glätten. Der Dämpfungsgrad ist mit der Funktion \textit{Dämpfung} über die Anzahl der jeweils gemittelten Werte im Bereich von 0 bis 99 einstellbar. Der beruhigte Messwert gilt auch für alle folgenden Auswertefunktionen. Die Dämpfung ist somit auch in Kombination mit der Mittelwertbildung über einzelne Messwerte (s. 11.4.3) oder bei Netzmessungen (s. 11.4.4) einsetzbar.

\[\bar{M} = \frac{\sum_{i} m_i}{N} \]

Messwertberuhigung über z.B. 15 Werte mit: \textit{Dämpfung: 15}
Die kontinuierliche Messstellenabfrage sollte ausgeschaltet sein, weil sich sonst bei vielen Messstellen die Messrate zu stark verringert: \textit{Messrate: 10M/s Cont: -}

\[\text{Zeitkonstante (s) = Dämpfung / Messrate \cdot (Messstellen +1) wird im Mittelwertassistenten berechnet und angezeigt.} \]

11.4.2 Mittelmodus
Die Mittelwertbildung über Messstellenabfragen ist im Handbuch Kap. 6.7.4. ausführlich beschrieben. Die Art der Mittelwertbildung wird bei jedem Kanal über die Funktion \textit{Mittelmodus} bestimmt. Folgende Modi sind mit dem Mittelmodus und der entsprechenden Bedienung realisierbar:

Funktion keine Mittelwertbildung: \textit{Mittelmodus: -----}
Mittelwertbildung über Einzelmessungen mit \textit{MANU} oder alle Messwerte von \textit{START} bis \textit{STOP}: \textit{Mittelmodus: \text{\textbf{CONT}}}
Mittelwertbildung über alle Messwerte in einem Zyklus: \textit{Mittelmodus: \text{\textbf{CYCL}}}
Ist eine Mittelwertbildung gestartet, leuchtet zur Kontrolle:
\textit{Anzeige des Mittelwertes in Funktion: \text{\textbf{Mittelwert: 12.34 m/s}}}

\[\text{Zur Aufzeichnung der Mittelwerte benötigen Sie einen \textit{Funktionskanal} mit dem Bereich } M(t) (s. 12.3.9/10) \text{ oder die entsprechende \textit{Ausgabefunktion } M(t) anstelle des Messwertes (s. 12.4.5).} \]
11.4.3 Mittelwertbildung über manuelle Einzelmessungen

\[\bar{M} = \frac{1}{N} \sum_{i} E_i \]

1. Messung stoppen, wenn gestartet:
2. Mittelmodus einstellen (s. 10.5):
 Zur Messwertberuhigung u.U. Dämpfung wählen;
 Dazu u.U. kontinuierliche Messung ausschalten:
3. Mittelwert nach Anwahl (s. 10.4) löschen mit:
 Funktion Mittelwert zeigt:
 Funktion Anzahl zeigt:
4. Einzelmesswerte Ex manuell abfragen:
 Funktion Mittelwert zeigt:
 Funktion Anzahl zeigt:
5. Für jeden Messpunkt Schritt 4 wiederholen.
6. Ausgabe aller Funktionswerte des Menüs mit:

11.4.4 Netzmessung
Insbesondere bei der Bestimmung der mittleren Geschwindigkeit in einem Strömungskanal nach VDI/VDE 2640 sind Messungen an ganz bestimmten Netzpunkten in einem senkrecht zur Leitungsachse liegenden Querschnitt durchzuführen (s. Hb. 3.5.5). Um alle Einzelwerte zu protokollieren oder Fehlmessungen wiederholen zu können, ist ein eigenes Menü zur Netzmessung verfügbar. Es ist in der Funktion Mittelwert mit der Taste <ARRAY> erreichbar. Das Menü kann natürlich auch für andere Punktmessungen verwendet werden.
11. Messen über Mess-Menüs

1. Der Mittelmodus spielt keine Rolle:
 Zur Messwertberuhigung u.U. Dämpfung wählen:
 Mittelmodus: ----
 Dämpfung: 20
2. Funktion Mittelwert anwählen:
3. Menü Netzmessung anwählen mit der Taste:
4. Zur Datenerfassung drücken Sie Taste:
5. Anzahl der Punkte eingeben:
 Es erscheint ein gelöschtes Array:
6. Anwahl eines Messpunktes mit:
7. Start der Messung mit Taste:
8. Stop der Messung mit Taste:
9. Alle Punkte erfassen gem. Schritten 6 bis 8:
10. Löschen des Arrays und neue Messung mit:
11. Zurück zum Messmenü:

11.4.5 Mittelwertbildung über die Messzeit, bzw. Messdauer

Um den Mittelwert aller über die Messrate erfassten Messwerte über einen bestimmten Zeitraum zu bestimmen, ist bei dem gewünschten Messkanal der Mittelungsmodus `CONT` einzustellen. Die Mittelwertbildung kann mit oder ohne Zyklus erfolgen. Bei Start und bei Stop wird in jedem Fall eine Messstellenabfrage durchgeführt, sodass Anfangswerte und Endewerte mit Uhrzeit aufgezeichnet werden können. Für die Aufzeichnung des Mittelwertes \(\bar{M} \) ist ein Funktionskanal \(M(t) \) (s. 12.3.9, 12.3.10) erforderlich.

\[\bar{M} = \frac{\sum m_i}{N} \]

Mittelmodus einstellen:
Mittelwert löschen automatisch beim Start (s. 12.5.8) oder nach Anwahl des Mittelwertes mit:
Start der Mittelwertbildung mit Taste:
Messzeit ablesen (s. 11.4.6) in Funktion:
Stop der Mittelwertbildung mit Taste:
Für eine feste Mittelzeit, gibt es auch die Funktion:
Mittelwert abgelesen in Funktion:
Ausgabe aller Funktionswerte des Menüs mit Taste:
11.4.6 Messzeit, Messdauer, Timer

Bei der Mittelwertbildung über die Zeit (s.o.) und bei vielen anderen Messver-
suchen wird oft die reine Messzeit von Start bis Stop benötigt. Um die Messzeit
laufend verfolgen zu können, ohne die Echtzeit zu löschen, gibt es die Funktion
¨Messzeit¨ im Format ´hh:mm:ss.xx´ mit einer Auflösung von 0.10 Sekunden.
Wenn bei den Betriebsparametern die Funktion ´Messwerte löschen beim
Start einer Messung¨ aktiviert ist (s. 12.5.8), wird auch die Messzeit bei jedem
Start automatisch gelöscht.

Funktion Messzeit: Messzeit: 00:00:00.00
Messzeit in Funktion Messzeit löschen mit: <CLEAR>

Messdauer

Soll die Messung oder die Mittelwertbildung (s.o.) nach einer festen Zeit stop-
pen, dann kann die Messdauer im Menü Zeiten - Zyklen (s. 12.1.4) oder in
einem Usermenü programmiert werden (wird in Statuszeile mit ´M´ angezeigt).

Funktion Messdauer: Messdauer: 00:00:00

Achten Sie bei einer Speicheraufnahme auf eine programmierte
Messdauer, damit die Aufnahme nicht vorzeitig abbricht!

Timer als Funktionskanal

Zur Ausgabe und Speicherung von Messzeiten gibt es Funktionskanäle ´Time´
im Format ´sssss´ oder ´ssss.s´ (s. 12.3.9). Den 2. Timer mit Auflösung von
0.1s erhält man durch Programmieren des Exponents auf -1. Bei einem Zäh-
lerstand von 60000 startet der Timer wieder bei 0. Neben allen Start-Stop-
Funktionen kann das Starten, Stoppen, Ausgeben und Nullsetzen des 2. Ti-
mers auch durch Grenzwertaktionen erfolgen (s. 12.4.3).

11.4.7 Mittelwertbildung über den Zyklus

Sollen in zyklischen Abständen die Mittelwerte über diese Zyklen erfasst wer-
den, dann ist der Mittelmodus ´CYCL´ zu verwenden. Er sorgt dafür, dass der
Mittelwert sowie Max- und Minwerte nach jedem Zyklus gelöscht werden, aber
during des folgenden Zykluses in der Anzeige erscheinen.

\[
\bar{m} = \frac{\sum_i m_i}{N}
\]
11. Messen über Mess-Menüs

Mittelung über Zyklus einstellen:
Zyklus programmieren (s. 12.1.2):

Messung starten, Mittelwertbildung läuft:
Messung stoppen:
Mittelwert/Zyklus ablesen in Funktion Mittelwert:
Ausgabe aller Funktionswerte des Menüs mit:

Mittelwert über manuelle Zeitabschnitte:
Mit dem gleichen Mittelmodus aber ohne Zyklus kann auch der Mittelwert über Zeitabschnitte von einer manuellen Messstellenabfrage zur nächsten bestimmt werden:

Mittelung über Zyklus einstellen:
Zyklus anwählen und löschen mit Taste:

Messung starten, Mittelwertbildung läuft:
Manuelle Messstellenabfrage:

Mittelwert von einer Messstellenabfrage zur nächsten:

Zur Aufzeichnung der Mittelwerte benötigen Sie einen zusätzlichen Funktionskanal mit dem Bereich \(M(t) \) (s. 12.3.9, 12.3.10) oder die entsprechende Ausgabefunktion \(M(t) \) anstelle des Messwertes (s. 12.4.5, Hb. 6.10.4).

11.4.8 Mittelwertbildung über Messstellen
Sie können bei allen Messstellenabfragen auch den Mittelwert über mehrere zusammenhängende Messstellen bestimmen. Dieser Mittelwert benötigt unbedingt einen Funktionskanal mit dem Messbereich \(M(n) \) (s. 12.3.9). Wenn Sie keine Bezugskanäle programmieren wollen und die zu mittelnden Messstellen mit M0 beginnen, müssen Sie nur den Funktionskanal \(M(n) \) auf den 2. Kanal des letzten Steckers (z.B. M13) programmieren (s. 12.3.10). Er bezieht sich automatisch auf die Reihe von Bezugskanal 2 (M0) bis Bezugskanal 1 (M3 = 1. Kanal). Andere Messstellenbereiche lassen sich durch Programmieren der Bezugskanäle realisieren (s. 12.4.6). Ganz einfach konfigurieren Sie den Funktionskanal mit dem Assistent-Menü zur Mittelwertbildung.
Mittelwertbildung

\[\sum_{i=0}^{3} 2 \]
\[\bar{M} = \left(\sum_{n=Bk} M_i \right) / N \]

Beispiel:
\[\sum_{i=0}^{3} 0 \]
\[M13 = \left(\sum_{n=M3} M_i \right) / N \]
\[M13 = \bar{M} \text{ von } M0 \text{ bis } M3 \]

Sollen die Fühler unangetastet bleiben, kann der Funktionskanal auch auf die geräteinternen Kanäle (z.B. M19) programmiert werden (s. 12.3.10). Die Standardbezugskanäle sind hier M0 bis M1.
11.4.9 Volumenstrommessung

Zur Bestimmung des Volumenstroms in Strömungskanälen muss die mittlere Strömungsgeschwindigkeit \bar{V} mit der Querschnittsfläche multipliziert werden. Im ‘Usermenü’ U3 (s.r.) sind die dafür nötigen Funktionen vorhanden: Ein Strömungskanal mit Mittelwertbildung, die Funktionen ‘Durchmesser’ bzw. ‘Querschnitt’ und ein Funktionskanal (s. 12.3.10) für den Volumenstrom. Ist der Volumenstromkanal noch nicht programmiert oder werden weitere Funktionen wie Profilfaktor oder Länge und Breite bei rechteckigen Querschnitten benötigt, dann ist das Assistent-Menü behilflich.

Volumenstrom $V_S = \text{mittlere Strömungsgeschw. } \bar{V} \cdot \text{Querschnittsfläche } QF$:

$$V_S = \bar{V} \cdot QF \cdot 0.36 \quad V_S = m^3/h, \ \bar{V} = m/s, QF = cm^2$$

Die mittlere Strömungsgeschwindigkeit \bar{V} kann bei überschlägigen Luftmengenmessungen an Lüftungsgittern durch zeitliche Mittelwertbildung bestimmt werden (s. 11.4.5 u. Hb. 3.5.5). Man setzt das Flügelrad an einem Ende an, startet die Mittelwertbildung, fährt gleichmäßig den ganzen Querschnitt ab und bei Erreichen des anderen Endes wird die Mittelwertbildung wieder gestoppt. Alternativ kann die mittlere Strömungsgeschwindigkeit auch durch einzelne Netzmessungen nach VDI/VDE 2640 (s. 11.4.4 u. Hb. 3.5.5) festgestellt werden (z.B. 13.24 m/s).

Zur Anzeige, Ausgabe und Speicherung der Anzahl der Messungen gibt es auch einen Funktionskanal ‘$n\left(t\right)$’ (s. 12.3.9, 12.3.10).

Bei Staurohren ist zur Berechnung der tatsächlichen Geschwindigkeit eine Temperatur- und Luftdruckkompensation vorzusehen (s. 11.2.5, 11.2.6).

Die mittlere Geschwindigkeit \bar{V} zeigt die Funktion: Eingabe des Durchmessers in mm (max. 4000): Eingabe der Querschnittsfläche QF direkt in cm²: Anzeige des Volumenstroms VS in einem Funktionskanal in m^3/h: Ausgabe aller Funktionswerte des Menüs mit Taste: <PRINT>

Umrechnung auf Normbedingungen

Bei allen Strömungsfühlern ist eine Umrechnung der tatsächlichen Messwerte auf die Normbedingungen Temperatur=20°C und Luftdruck=1013mb möglich. Dazu ist entweder bereits im Geschwindigkeitskanal oder nur im Volumenstromkanal im Kommentar ein ‘#N’ zu programmieren (s. 12.3.2), das ergibt dann automatisch den Normvolumenstrom.
11.5 Darstellung von mehreren Messstellen

Die bisher genannten Messmenüs erlauben prinzipiell nur die Anwahl und Darstellung einer Messstelle. In diesem Kapitel zeigen wir Ihnen, wie Sie mehrere Messstellen kombiniert mit den Funktionen Ihrer Wahl gleichzeitig auf den Bildschirm bekommen.

11.5.1 Menü Mehrkanalanzeige und Balkengrafik

Das Menü **Mehrkanalanzeige** zeigt Ihnen nach dem ersten Aufruf den Messwert der ersten drei aktiven Kanäle in mittlerer Größe. Sie lassen sich aber beliebig programmieren:

Messstellenanwahl:

Der 1. Messkanal ist immer die angewählte Messstelle. Er lässt sich wie in jedem Menü direkt anwählen mit: ▲ oder ▼ ...

Zur Änderung der anderen Kanäle muss die Messstelle als Funktion angewählt werden mit den Tasten: PROG und ▲ oder ▼ ...

Jetzt lässt sich die angewählte Messstelle ändern mit: <M▲>, <M▼> ...

Beenden der Messstellenauswahl mit der Taste: <ESC>

Zur **Einstellung des Anzeigebereiches** der Balkengrafik dienen die Funktionen **Analog-Anfang** und **Analog-Ende** im Menü **Spezialfunktionen** (s. 12.4.4). Sie können nach Anwahl mit den Tasten PROG und ▼ ... auch direkt an der Achse eingegeben werden (s. 10.5).

11.5.2 Differenzmessung

Werden an die Messstellen M0 und M1 zwei Fühler mit gleicher Kommastelle und Dimension angeschlossen, erscheint unter der geräteinternen Messstelle M9 (s. 8.2) automatisch die Differenz M1-M0. Wird der Differenzkanal nicht gewünscht, muss er explizit gelöscht werden (s. 12.3.9). Sollen noch zusätzlich Differenzkanäle eingerichtet werden, dann ist auch dies mit den entsprechenden Bezugskanälen möglich (s. 12.4.6).
11. Messen über Mess-Menüs

11.5.3 Menü Messstellenliste

Den besten Überblick über das Messsystem mit allen Messwerten, Uhrzeit, Datum und Zyklus erhalten Sie mit dem Menü **Messstellenliste**. Von den Messstellen aus kommt man auch zur **FühlerProgrammierung** der Messstellen.

Dieses Menü lässt sich nicht frei konfigurieren, sondern nur mit einigen ausgewählten Funktionen kombinieren:

Beim 1. Aufruf erscheint die Liste mit max. 20 Messwerten:
Weitere Messstellen anwählen mit:
Dem Messwert lassen sich eine Reihe von Funktionen zuordnen mit den Tasten:
Die max. Kanalzahl reduziert sich dabei auf 10.
Jeweils nächste Funktion mit Taste:
Messwert mit **Kommentar**:
Messwert mit **Maxwert**:
Messwert mit **Minwert**:
Messwert mit **Mittelwert**:
Messwert mit **Grenzwert Max**:
Messwert mit **Grenzwert Min**:
Nur **Messbereich** (wieder max. 20 Kanäle):

Funktionsanwahl zum Programmieren ist möglich: **PROG**, **▲** / **▼** ...

Messstellenliste: 20 Messw
00: 23.12°C ... / **MV** ...
▲ oder **▼** ...

Messstellenliste: Kommentar
00: 23.12°C Temperatur
Messstellenliste: Maxwert
00: 23.12 °C 32.67 °C
Messstellenliste: Minwert
00: 23.12 °C 19.34 °C
Messstellenliste: Mittelwert
00: 23.12 °C 25.45 °C
Messstellenliste: GW-Max
00: 23.12 °C 32.67 °C
Messstellenliste: GW-Min
00: 23.12 °C 19.34 °C
Messstellenliste: Bereich
00: NTC °C

11.6 Assistent-Menüs für Spezialmessungen

11.6.1 Wärmekoeffizient
Zur Bestimmung des Wärmekoeffizienten \(q/(T_1-T_0) \) werden die beiden Temperaturfühler der Aufgabenstellung entsprechend (s. Hb. 3.2) auf Kanal M0 und M1, sowie die Wärmeflussplatte auf M2 angesteckt. Die Temperaturdifferenz \(T(M1)-T(M0) \) wird automatisch auf Kanal M9 erfasst.

Zur Messung müssen nur folgende Programmierungen durchgeführt werden:

<table>
<thead>
<tr>
<th>Modus von M9</th>
<th>CONT oder CYCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modus von M2</td>
<td>CONT oder CYCL</td>
</tr>
<tr>
<td>Bereich von M12</td>
<td>(q/dt)</td>
</tr>
<tr>
<td>Zyklus eingegeben mit</td>
<td>Zyklus-Timer</td>
</tr>
<tr>
<td>Messung starten mit</td>
<td><START></td>
</tr>
<tr>
<td>Messung stoppen mit</td>
<td><STOP></td>
</tr>
</tbody>
</table>

11.6.2 Wet-Bulb-Globe-Temperatur
Die Arbeitsbelastung an Hitzearbeitsplätzen kann über die Wet-Bulb-Globe-Temperatur nach folgender Formel bewertet werden:

\[\text{WBGT} = 0.1 T_T + 0.7 T_{HTN} + 0.2 T_G \]
(s.Hb. 3.1.4)

Für die Trockentemperatur \(T_T \) und die natürliche Feuchttempertur \(T_{HTN} \) schließt man ein Psychrometer (FN A848-WB) mit abschaltbarem Motor an Buchse M0 an. An die Buchse M1 kommt ein Pt100-Globethermometer. Auf Kanal 11 wird der Bereich WBGT programmiert (Der Faktor 0.2 darf bei diesem Gerät nicht programmiert werden!).

11.7 Anwendermenüs
Bei der Betrachtung der Messmenüs werden Sie festgestellt haben, dass die Messwertdarstellung und die Zusammenstellung der Funktionen nicht immer optimal zu Ihren Anwendungen passt. Deshalb können Sie neben den Standard-Messmenüs die drei User-Menüs U1 bis U3 mit der Software AMR-Control völlig frei konfigurieren. Aus folgender Funktionsliste können Sie die benötigten Funktionen in beliebiger Anordnung selbst auf dem Display plazieren, soweit der verfügbare Platz von 13 Zeilen ausreicht. Außer den bereits dargestellten Messfunktionen stehen Zeiten zur Ablaufsteuerung (s. 12.1.) und die meisten Fühlerprogrammierfunktionen (s. 12.3) zur Verfügung.
11.7.1 Funktionen

<table>
<thead>
<tr>
<th>Funktionen:</th>
<th>Anzeige:</th>
<th>Tasten:</th>
<th>Befehl:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messwert klein</td>
<td>00: 234.5°C Temperatur</td>
<td>ZERO</td>
<td>ADJ 15</td>
</tr>
<tr>
<td>Messwert mittel 3 Zeilen</td>
<td>00: 1234.5 °C</td>
<td>ZERO</td>
<td>ADJ 16</td>
</tr>
<tr>
<td>Messwert groß 7 Zeilen</td>
<td>00: Temperatur °C</td>
<td>ZERO</td>
<td>ADJ 17</td>
</tr>
<tr>
<td>Messwert Balken 2 Zeilen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grenzwert Max (s. 12.3.5)</td>
<td>Grenzw. Max: 1234.5°C</td>
<td>OFF</td>
<td>ON 00</td>
</tr>
<tr>
<td>Grenzwert Min:</td>
<td>Grenzw. Min: -0123.4°C</td>
<td>OFF</td>
<td>ON 01</td>
</tr>
<tr>
<td>Basiswert (s. 12.3.6)</td>
<td>Basiswert: ------ °C</td>
<td>OFF</td>
<td>ON 02</td>
</tr>
<tr>
<td>Faktor:</td>
<td>Faktor: 1.12345</td>
<td>OFF</td>
<td>ON 03</td>
</tr>
<tr>
<td>Exponent:</td>
<td>Exponent: 0</td>
<td>OFF</td>
<td>ON 04</td>
</tr>
<tr>
<td>Nullpunkt (s. 12.3.7)</td>
<td>Nullpunkt: ------ °C</td>
<td>OFF</td>
<td>ON 05</td>
</tr>
<tr>
<td>Steigung:</td>
<td>Steigung: ------ °C</td>
<td>OFF</td>
<td>ON 06</td>
</tr>
<tr>
<td>Analog-Anfang (s. 12.4.4)</td>
<td>Analog-Anfang: 0.0°C</td>
<td>OFF</td>
<td>ON 07</td>
</tr>
<tr>
<td>Analog-Ende:</td>
<td>Analog-Ende: 100.0°C</td>
<td>OFF</td>
<td>ON 08</td>
</tr>
<tr>
<td>Bereich (s. 12.3.9)</td>
<td>Bereich: NiCr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxwert (s. 11.1.2)</td>
<td>Maxwert: 1122.3°C</td>
<td>CLR</td>
<td>CLRA 09</td>
</tr>
<tr>
<td>Minwert:</td>
<td>Minwert: 19.3°C</td>
<td>CLR</td>
<td>CLRA 10</td>
</tr>
<tr>
<td>Mittelwert:</td>
<td>Mittelwert: ------ °C</td>
<td>CLR</td>
<td>CLRA 11</td>
</tr>
<tr>
<td>Zyklus (s. 12.1.2)</td>
<td>Zyklus: 00:00:00Un</td>
<td>CLR</td>
<td>FORM 12</td>
</tr>
<tr>
<td>Uhrzeit, Datum (s. 12.1.1)</td>
<td>Zeit: 12:34:56 Dat.: 01.02.00</td>
<td>CLR</td>
<td></td>
</tr>
<tr>
<td>Mittelmodus:</td>
<td>Mittelmodus: CONT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messrate: (s. 12.1.3)</td>
<td>Messrate: 10M/s Cont: -</td>
<td>OFF</td>
<td>ON 19</td>
</tr>
<tr>
<td>Zyklus-Timer: (s. 11.3.2)</td>
<td>Zyklus-Timer: 00:00:00Un</td>
<td>CLR</td>
<td>FORM 20</td>
</tr>
<tr>
<td>Mittelzahl (s. 11.4.3)</td>
<td>Anzahl: 00000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nummer (s. 12.2.3)</td>
<td>Nummer: 123-56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bereich, Kommentar:</td>
<td>NiCr Temperatur M H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchmesser mm (s. 11.4.9)</td>
<td>Durchmesser: 0000 mm</td>
<td>CLR</td>
<td></td>
</tr>
<tr>
<td>Querschnitt cm² (s. 11.4.9)</td>
<td>Querschnitt: 0000 cm²</td>
<td>CLR</td>
<td></td>
</tr>
<tr>
<td>Max-Zeit-Datum (s. 11.1.2)</td>
<td>Maxzeit: 12:34 01.02.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min-Zeit-Datum</td>
<td>Minzeit: 13:45 01.02.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leerzeile:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linie:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dämpfung (s. 11.4.1)</td>
<td>Dämpfung: 10</td>
<td>CLR</td>
<td></td>
</tr>
<tr>
<td>Speicher frei (s. 11.3.3)</td>
<td>Speicher Frei: 502.1kB CMEM PRINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dateiname: (s. 12.2.2)</td>
<td>Dateiname: ALMEMO.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

52 ALMEMO® 5690-2M
Anwendermenüs

<table>
<thead>
<tr>
<th>Gerätbezeichnung (s.12.5.1)</th>
<th>Firma Mustermann</th>
<th>CLR</th>
<th>o 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text1:</td>
<td>1: Kommentarzeile</td>
<td>CLR</td>
<td>o 37</td>
</tr>
<tr>
<td>Text2:</td>
<td>2: Kommentarzeile</td>
<td>CLR</td>
<td>o 38</td>
</tr>
<tr>
<td>Text3: (s. 11.7)</td>
<td>U1 Menütitel</td>
<td>CLR</td>
<td>o 39</td>
</tr>
<tr>
<td>Text4:</td>
<td>U2 Menütitel</td>
<td>CLR</td>
<td>o 40</td>
</tr>
<tr>
<td>Text5:</td>
<td>U3 Menütitel</td>
<td>CLR</td>
<td>o 41</td>
</tr>
<tr>
<td>Verriegelung (s. 12.3.4)</td>
<td>Verriegelung:</td>
<td>CLR</td>
<td>o 42</td>
</tr>
<tr>
<td>Luftdruck (s. 12.5.6)</td>
<td>Luftdruck:</td>
<td>CLR</td>
<td>o 43</td>
</tr>
<tr>
<td>Temperaturkomp. (s. 11.2.5)</td>
<td>Temp.Komp:</td>
<td>CLR</td>
<td>o 44</td>
</tr>
<tr>
<td>Sollwert (s. 11.2.4)</td>
<td>Sollwert:</td>
<td>OFF</td>
<td>ADJ</td>
</tr>
<tr>
<td>Messzeit: (s. 11.4.6)</td>
<td>Messzeit:</td>
<td>CLR</td>
<td>o 46</td>
</tr>
<tr>
<td>Messdauer: (s. 12.1.4)</td>
<td>Messdauer:</td>
<td>CLR</td>
<td>o 47</td>
</tr>
</tbody>
</table>

11.7.2 Konfiguration der Menüs

Wählen Sie aus den Messmenüs ein Usermenü U1, U2 oder U3, das Sie z.Zt. nicht benötigen:

Zur Konfiguration schließen Sie bitte das Gerät über ein Datenkabel an Ihren PC an und rufen die mitgelieferte Software AMR-Control auf.

Mit einem Mausklick auf:

- Netzwerk durchsuchen
- Geräteliste
- Usermenüs programmieren

gelangen Sie zur:

- Wählen Sie das Gerät an und drücken:

Mit Drag and Drop ziehen Sie die Funktionen auf der linken Seite in das Menüfenster rechts.

Bei allen messwertbezogenen Funktionen (z.B. Max-, Mittelwert, auch Balkenanzeige) müssen Sie jeweils zuerst den Messwert der Messstelle einsetzen, erst dann die dazugehörigen Funktionen!

Setzen Sie einen aussagekräftigen Menütitel ein: Usermenütitel

Das fertige Menü im Gerät auf Ux speichern mit: Menü speichern, Ux, OK

Sie können alle Menüs auch im PC speichern und bei Bedarf wieder laden!

11.7.3 Funktionsausdrucke

Die Funktionen aller Messmenüs können Sie in der angezeigten Reihenfolge ausdrucken mit der Taste: <PRINT> (s.a. 11.3.4)

Das Druckbild der einzelnen Funktionen ist in der folgenden Tabelle aufgeführt:
11. Messen über Mess-Menüs

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Ausdruck</th>
<th>Befehl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messwert, alle Formate</td>
<td>01: +0023.5 °C Temperatur</td>
<td>P35</td>
</tr>
<tr>
<td>Maxwert</td>
<td>MAXIMALWERT: 01: +0020.0 °C</td>
<td>P02</td>
</tr>
<tr>
<td>Maxzeit</td>
<td>MAX-ZEIT: 01: 12:32 01.02</td>
<td>P28</td>
</tr>
<tr>
<td>Minwert</td>
<td>MINIMALWERT: 01: -0010.0 °C</td>
<td>P03</td>
</tr>
<tr>
<td>Minzeit</td>
<td>MIN-ZEIT: 01: 12:32 01.02</td>
<td>P29</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>MITTELWERT: 01: +0017.8 °C</td>
<td>P14</td>
</tr>
<tr>
<td>Mittelmode</td>
<td>MITTELMODE: 01: CONT</td>
<td>P21</td>
</tr>
<tr>
<td>Mittelanzahl</td>
<td>MITTELANZAHL: 01: 00178.</td>
<td>P22</td>
</tr>
<tr>
<td>Speicher Frei</td>
<td>SPEICHER: S0512.1 F0324.4 A</td>
<td>P33</td>
</tr>
<tr>
<td>Nummer</td>
<td>NUMMER: 01-012</td>
<td>P23</td>
</tr>
<tr>
<td>Bereich (Kommentar)</td>
<td>BEREICH: 01: NiCr</td>
<td>P24</td>
</tr>
<tr>
<td>Grenzwert MAX</td>
<td>GRENZW. MAX: 01: -0100.0 °C</td>
<td>P08</td>
</tr>
<tr>
<td>Grenzwert MIN</td>
<td>GRENZW. MIN: 01: +0020.0 °C</td>
<td>P09</td>
</tr>
<tr>
<td>Basis</td>
<td>BASISWERT: 01: -0273.0 °C</td>
<td>P06</td>
</tr>
<tr>
<td>Faktor</td>
<td>FAKTOR: 01: +1.0350E-1</td>
<td>P07</td>
</tr>
<tr>
<td>Nullpunktkorrektur</td>
<td>NULLPUNKT: 01: -0000.7 °C</td>
<td>f1 P06</td>
</tr>
<tr>
<td>Steigungskorrektur</td>
<td>STEIGUNG: 01: +1.0013</td>
<td>f1 P07</td>
</tr>
<tr>
<td>Analog-Anfang</td>
<td>ANALOGANFANG: 01: +0000.0 °C</td>
<td>P16</td>
</tr>
<tr>
<td>Analog-Ende</td>
<td>ANALOGENDE: 01: +0100.0 °C</td>
<td>P17</td>
</tr>
<tr>
<td>Zyklus</td>
<td>DRUCKZYKLUS: 00:06:00</td>
<td>P11</td>
</tr>
<tr>
<td>Zyklus-Timer</td>
<td>DRUCKTIMER: 00:06:00</td>
<td>f1 P11</td>
</tr>
<tr>
<td>Zeit, Datum</td>
<td>UHRZEIT: 12:34:00 01.02.04</td>
<td>P10, P13</td>
</tr>
<tr>
<td>Anfangszeit</td>
<td>ANFANGSZEIT: 07:00:00</td>
<td>f1 P10</td>
</tr>
<tr>
<td>Endezeit</td>
<td>ENDEZEIT: 17:00:00</td>
<td>f2 P10</td>
</tr>
<tr>
<td>Anfangsdatum</td>
<td>ANFANGSDATUM: 01.02.04</td>
<td>f1 P13</td>
</tr>
<tr>
<td>Endedatum</td>
<td>ENDEDATUM: 02.02.04</td>
<td>f2 P13</td>
</tr>
<tr>
<td>Messzeit</td>
<td>MESSZEIT: 00:00:00.00</td>
<td>P46</td>
</tr>
<tr>
<td>Messdauer</td>
<td>MESSDAUER: 00:00:00</td>
<td>P47</td>
</tr>
<tr>
<td>Dämpfung</td>
<td>DAEMPFUNG: 01: 10</td>
<td>P32</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>DURCHMESSER: 01: 00100 mm</td>
<td>P25</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>QUERSCHNITT: 01: 00078 cm²</td>
<td>P26</td>
</tr>
<tr>
<td>Luftdruck</td>
<td>LUFTDRUCK: +01013.mb</td>
<td>P43</td>
</tr>
<tr>
<td>Temp-Kompensation</td>
<td>KOMPENSATION: 01: 25.0°C</td>
<td>P44</td>
</tr>
<tr>
<td>Sollwert</td>
<td>SOLLWERT: 01: 1100.0°C</td>
<td>P45</td>
</tr>
<tr>
<td>Gerätebezeichnung</td>
<td>Fa.Ahlborn, Holzkirchen</td>
<td>P36</td>
</tr>
<tr>
<td>Linie</td>
<td>---------------------------------------</td>
<td>P31</td>
</tr>
<tr>
<td>Leerzeile</td>
<td>---------------------------------------</td>
<td>P30</td>
</tr>
<tr>
<td>Text1</td>
<td>Kommentartext 1</td>
<td>P37</td>
</tr>
<tr>
<td>Text2</td>
<td>Kommentartext 2</td>
<td>P38</td>
</tr>
<tr>
<td>Text3</td>
<td>Menütitel U1</td>
<td>P39</td>
</tr>
<tr>
<td>Text4</td>
<td>Menütitel U2</td>
<td>P40</td>
</tr>
<tr>
<td>Text5</td>
<td>Menütitel U3</td>
<td>P41</td>
</tr>
<tr>
<td>Verriegelung</td>
<td>Verriegelung: 5</td>
<td>P42</td>
</tr>
</tbody>
</table>
12. PROGRAMMIEREN MIT PROGRAMMIER-MENÜS

In den Messmenüs haben Sie neben den Messfunktionen bereits eine Reihe von Funktionen zur Ablaufsteuerung und Fühlerprogrammierung kennengelernt.

Eine vollständige und systematische Auflistung aller Programmierfunktionen finden Sie jetzt hier in den **PROGRAMMIER-Menüs**.

Das Auswahlmenü erreicht man von der Messmenüauswahl aus mit Taste: `<MENU1>`

Für einige Programmierfunktionen gibt es zusätzlich **ASSISTENT-Menüs**.

12.1 Zeiten und Zyklen

Alle Zeitfunktionen zur Messung, Ablaufsteuerung und Protokollierung sind in dem Programmiermenü **Zeiten - Zyklen** zusammengefasst und dort programmierbar.

12.1.1 Uhrzeit und Datum

Zur Protokollierung der Messzeit ist im ALMEMO 5690-2M eine Echtzeituhr mit Datum eingebaut. Sie ist mit einer Lithiumbatterie ausgestattet, sodass Uhrzeit und Datum auch beim Batteriewechsel erhalten bleiben. Durch Anwahl der Funktion (s. 10.4) ist in der ersten Zeile links die Uhrzeit, rechts das Datum im angegebenen Format programmierbar (s. 10.5).

Funktion Uhrzeit und Datum:
Format von Uhrzeit und Datum:

Zeit: 12:34:56 Datum: 01.01.04

12.1.2 Zyklen mit Speicheraktivierung und Ausgabeformat

Für zyklische Messwertspeicherung und -ausgaben auf die Schnittstelle verwenden Sie den **Zyklus** (er entspricht dem Druckzyklus anderer ALMEMO®-Geräte, der Messzyklus ist nicht mehr implementiert). Die Speicheraktivierung im Zyklus, d.h. die zyklische Aufzeichnung der Daten im Speicher, ist nach einer Neuinitialisierung automatisch eingeschaltet, kann aber bei Bedarf abgeschaltet werden.
12. Programmieren mit Programmier-Menüs

Funktion Zyklus (Format hh:mm:ss):
Zyklus löschen, laufende Abfrage beenden:
Funktion Speicheraktivierung im Zyklus:
Speichern einschalten (Grundeinstellung):
Speichern wieder ausschalten:
Funktion Sleepmode einschalten s. 12.2.5:
Ausgabeformat ‘Liste’ Messwerte untereinander:
Ausgabeformat ‘n’ Spalten nebeneinander:
Ausgabeformat ‘t’ Tabelle mit Semikolontrennung:

In den Messmenüs erscheinen hinter dem Zyklus für die Speicheraktivierung ein ‘S’, bzw. ohne ein ‘U’ und als Kürzel für das Format ‘n’ oder ‘t’:

Funktion Zyklus (Format hh:mm:ss):
Zyklus: 00:15:00
<CLR>
Funktion Speicheraktivierung im Zyklus:
Speichern: ✔ Mode:Normal
<ON> ✔
<OFF> –
Funktion Sleepmode einschalten s. 12.2.5:
Ausgabeformat ‘Liste’
Ausgabeformat ‘Spalten’
Ausgabeformat ‘Tabelle’

12.1.3 Messrate, kontinuierliche Messstellenabfrage
Bei Bedarf kann die Standardmessrate (Wandlungsrate) von 10M/s bei Messstellenabfragen in Funktion ‘Messrate’ auf 2,5M/s, 50M/s oder 100M/s eingestellt werden (s. Hb. 6.5). Optional ist nur bei passiven Umschaltern und nur für 1 Messstelle auch eine Messrate von 400M/s möglich (SA0000-Q4).

Halbkontinuierliche Messstellenabfrage
Die Möglichkeit, nur die angewählte Messstelle zu erfassen (nicht kontinuierlich) ist nicht mehr vorgesehen, weil es leicht zu Fehlern kommt, wenn die übrigen Fühler nicht berücksichtigt werden. Dennoch kann es insbesondere bei vielen Fühlern sinnvoll sein, die angewählte Messstelle bevorzugt zu behandeln und den Messwert öfter zu erneuern, z.B. bei der Analogausgabe oder der Messwertdämpfung. Deshalb wurde die ‘**nichtkontinuierliche**’ Messstellenabfrage ersetzt, d.h. alle Messstellen werden kontinuierlich erfasst, aber jede 2. Messung kommt die angewählte Messstelle wieder dran. Die Summenabtastrate halbiert sich gegenüber der kontinuierlichen Messstellenabfrage.

```
 0  M  1  M  2  M  3  M  4  M  5  M  0  M  1  M  2  M  3  M
```
Zeiten und Zyklen

Kontinuierliche Messstellenabfrage
In der Standardeinstellung, kontinuierliche Messstellenabfrage, werden alle aktiven Messkanäle gleichmäßig mit der Messrate ununterbrochen hintereinander abgefragt und am Ende eine Sondermessung eingefügt (s. Hb. 6.5.1.3).

In beiden Modi können jederzeit alle Messwerte ausgegeben und gespeichert werden. Mit den beiden folgenden Funktionen ist die kontinuierliche Speicherung und die kontinuierliche Ausgabe der Messwerte mit der Messrate aktivierbar.

Funktion Messrate: Eingabe s. 10.5
kontinuierliche Messstellenabfrage (Standard):
halbkontinuierliche Messstellenabfrage:
kontinuierliche Speicherung aus:
kontinuierliche Speicherung einschalten:
kontinuierliche Ausgabe aus:
kontinuierliche Ausgabe einschalten:

Bei der Wahl der Messrate ist zu generell bedenken, dass bei niedriger Messrate die Messqualität steigt, mit höherer sinkt. Bei Messraten über 10 M/s ist prinzipiell keine Netzerbrummunterdrückung mehr möglich, sodass die Genauigkeit zusätzlich durch Einstreuungen in die Anschlussleitungen beeinträchtigt werden kann (möglichst verdrillen!). Das Speichern mit 100M/s bzw. 400M/s ist nur mit der Speichercard möglich, nicht mit dem internen EEPROM-Speicher.

12.1.4 Anfangszeit -datum, Endezeit -datum, Messdauer
Eine Messreihe kann zu bestimmten Zeitpunkten selbstständig gestartet und gestoppt werden. Dazu ist Anfangszeit und -datum, sowie Endezeit und -datum programmierbar. Ist kein Datum festgelegt, so wird die Messung jeden Tag im eingestellten Zeitraum durchgeführt. Die aktuelle Uhrzeit muss natürlich programmiert sein. Alternativ zur Endezeit ist auch die Messdauer programmierbar (s. auch 11.4.6, 12.2.2).

Funktion Messdauer (Format hh:mm:ss):
Messdauer: 00:00:00
Funktion Anfangszeit (Format hh:mm:ss):
Anfangszeit: 07:00:00
Funktion Endezeit (Format hh:mm:ss):
Endezeit: --.--.--
Funktion Anfangsdatum (Format tt:mm:jj):
Anfangsdatum: 01.05.00
Funktion Endedatum (Format tt:mm:jj):
Endedatum: --.--.--

Löschen der Werte nach Anwahl der Funktion mit: <OFF>
Ist der Anfangszeitpunkt einer Messung programmiert, erscheint in der Statuszeile das Symbol: ‘►’
Ist der Endezeitpunkt oder die Messdauer einer Messung programmiert, erscheint in der Statuszeile das Symbol: ‘_regular’
12.2 Messwertspeicher
Die Grundlagen zur Datenspeicherung in ALMEMO®-Geräten sind im Handbuch Kap. 6.9 beschrieben. Die Anlage ALMEMO 5690-2M hat intern nur mit Option S 512kByte EEPROM-Datenspeicher, ausreichend für 64.000 bis 100.000 Messwerte (abh. von der Kanalzahl). Bei Ausfall der Versorgungsspannung bleiben die Messdaten erhalten. Die Organisation kann von Linear- auf Ringspeicher umkonfiguriert werden (s. Hb. 6.10.13.2). Alternativ kann eine SD-Card im serienmäßigen Steckplatz (4) verwendet werden.

12.2.1 Speicher mit Speichercard

Die Speichercard wird in den Steckplatz (4) auf der Frontplatte gesteckt und automatisch erkannt. Dies sieht man im Menü Speicheraufnahme (s. 12.2.2) an der Funktion Speicher Extern und an der höheren Speicherkapazität, sowie einem Dateinamen in der Funktion Dateiname. Der externe Speicher wird verwendet, wenn er beim Start einer Messung angesteckt ist. Er darf während der Messung nicht abgezogen werden, weil sonst zwischengespeicherte Messwerte verloren gehen.

Speicherplatz extern verfügbar: Speicher Extern: 64.00 MB
Speicherplatz noch frei: Speicher Frei: 21.75 MB
Dateiname (max. 8-stellig): Dateiname: ALMEMO.001

Vor dem Start jeder Messung können Sie in der Funktion Dateiname einen 8stelligen Dateinamen eingeben. Geschieht das nicht, wird der Defaultname „ALMEMO.001“ oder der zuletzt verwendete Name verwendet. Solange sich die Steckerkonfiguration nicht ändert, können Sie mehrere Messungen, manuell oder zyklisch, auch mit Nummern (s. 12.2.3) in der gleichen Datei speichern.

Hat sich die Steckerkonfiguration gegenüber der letzten Messung jedoch geändert und ist kein neuer Dateiname programmiert, dann wird immer eine neue Datei angelegt und dabei der Index in der Extension automatisch um 1 hochgezählt, z.B. „ALMEMO.002“.

Zur Funktionskontrolle der Speichercard dient eine LED, die folgende Zustände signalisiert:
- Daten werden aufgezeichnet: LED blinkt im Rhythmus des Zyklus
- Daten werden ausgelesen: LED leuchtet während der Ausgabe

Die Funktion Ringspeicher wird bei Speichercards nicht unterstützt!
Bei Messungen mit einer Speichercard und einer Messrate von 100M/s können im Netzbetrieb Messfehler auftreten, wenn das Gehäuse nicht geerdet ist. Es wird in diesem Fall empfohlen, die Erdbuchse des Gerätes mit Schutzerde zu verbinden.

12.2.2 Messdatenaufnahme

Die meisten Parameter, die zur Aufzeichnung von Messwerten benötigt werden, wurden im Menü Zeiten - Zyklen (s. 12.1) bereits beschrieben.

1. Uhrzeit und Datum
2. Zyklus, Speicheraktivierung, Sleepmode
3. Messrate mit Speicheraktivierung
4. Anfang- und Endezeit einer Messung

Zur besonders einfachen Vorbereitung einer Speicheraufnahme kann man das Menü Speicheraufnahme verwenden.

Für die vielfältigen Möglichkeiten zum Starten und Stoppen der Messung gibt es außerdem noch eigene Assistent-Menüs! (s. 12.2.4)

ACHTUNG! Im internen Speicher wird nur eine Fühlerkonfiguration beim ersten Start abgespeichert, zusätzliche Fühler werden beim nächsten Start ergänzt. Werden aber andere Fühler angesteckt, muss vor der nächsten Aufzeichnung der Speicher ausgelesen und gelöscht werden!

Menü Speicheraufnahme:

Speicherplatz intern verfügbar: 512.0 kB
Speicherplatz noch frei: 125.8 kB
Speicherplatz extern verfügbar: 64.01 MB

Linearer Speicher ohne Überschreiben von Daten:

Ringspeicher mit Überschreiben von Daten:

Aktive Kanäle für Min-Zyklus und Speicherzeit:
Zyklus eingeben (s. 10.5, Format hh:mm:ss.cc):

Minimal-Zyklus mit 50M/s entspr. Kanalzahl:
Zyklus ohne Speichern und ohne Sleepmode:

Speichern anwählen und einschalten mit:

Sleepmode (s. 12.2.5) einschalten mit:

Möglich. Speicherzeit aus Zyklus und Kanalzahl:
Messdauer, nach Start automatischer Stop nach:

Dateiname bei Speicherstecker (max. 8stellig):
Nummer: z.B. Zimmer 12, Messpunkt 1 s. 12.2.3

* SPEICHERAUFAHME *

<table>
<thead>
<tr>
<th>Speicher Intern:</th>
<th>512.0 kB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speicher Frei:</td>
<td>125.8 kB</td>
</tr>
<tr>
<td>Ringspeicher:</td>
<td>✓</td>
</tr>
<tr>
<td>Messkanäle:</td>
<td>24 aktiv: 05</td>
</tr>
<tr>
<td>Zyklus:</td>
<td>00:01:00.00</td>
</tr>
<tr>
<td>Speichern:</td>
<td>✓ Mode:Normal</td>
</tr>
<tr>
<td>Speicherzeit:</td>
<td>24d 13h</td>
</tr>
<tr>
<td>Messdauer:</td>
<td>00:15:00</td>
</tr>
<tr>
<td>Dateiname:</td>
<td>Almemo.000</td>
</tr>
<tr>
<td>Nummer:</td>
<td>01-001 A</td>
</tr>
</tbody>
</table>

CLR MIN F ESC
12. Programmieren mit Programmier-Menüs

12.2.3 Nummerierung von Messungen

Nach Anwahl der Funktion **Nummer** wird die 6-stellige Nummer normal eingegeben (s. 10.5).Außer den Ziffern 0 bis 9 sind auch die Zeichen A,F,N,P,- oder _ (Leerzeichen) möglich. Nach der Eingabe ist die Nummer aktiviert und dahinter erscheint ein ´A´ bis zur Speicherung der nächsten zyklischen oder manuellen Messung.

Funktion Nummer: (z.B. Zimmer 12, Messpunkt 1) **NUMMER:** 12-001 A

Nullsetzen und Deaktivieren der Nummer: <CLR>

Aktivieren und **Deaktivieren** der Nummer mit: <ON>, <OFF>

Inkrementieren und **Aktivieren** der Nummer mit: <+1>

12.2.4 Starten und Stoppen von Messungen
Neben dem Starten und Stoppen der Messung mit den Tasten gibt es eine Reihe weiterer Möglichkeiten, die mit dem Assistent-Menü **START-STOP** anschaulich vermittelt werden.

Die Bedienung über die Schnittstelle ist im Handbuch Kap. 6.6 beschrieben.

Die Funktion von Anfang- und Endezeit oder Messdauer ist in Kap. 12.1.4 beschrieben, die Grenzwertaktionen in Kap. 12.4.3 sowie die Relais- und Triggervarianten in Kap. 12.6.2.

12.2.5 Abfragemodus
Für autarken Betrieb und/oder Rechnerabfrage gibt es 4 Abfragemodi:

Normal: Interner Zyklus oder zyklische Abfrage durch den Rechner

Sleep: Nur interner Zyklus mit Abschaltung für Langzeitüberwachungen

Monitor: Interner Zyklus wird durch Rechnerabfrage nicht gestört

Fail-Save: Zykliche Abfrage durch PC, nach Ausfall interner Zyklus

Sleepmodus

60 ALMEMO® 5690-2M
Für eine **Datenaufzeichnung im Sleepmodus** führen Sie im Menü **Speicher- aufnahme** bitte folgende Schritte durch:

1. Zyklus von mindestens 2 Minuten eingeben: $00:05:00$
2. Speicheraktivierung im Zyklus einschalten: \checkmark Mode:Normal
3. Sleepmodus anwählen: \checkmark Mode:Sleep
4. Sleepmodus einschalten mit Taste:
5. In einem Messmenü Messung starten mit: Das Gerät meldet im Display noch, dann schaltet es sich aus und zur Kontrolle blitzt nur die Lampe ‘SLEEP’ (2) rhythmisch auf.
6. Im eingestellten Zyklus schaltet sich das Gerät automatisch ein, führt eine Messstellenabfrage durch, und schaltet sich dann wieder ab.
7. Sleepmodus beenden mit Taste:
8. Messung beenden mit der Taste:

 Das Starten und Stoppen durch Anfangs- und Endezeit, sowie durch Grenzwerte ist im Sleepmodus nicht möglich und muss daher ausgeschaltet sein!

Monitor-Mode:
Soll ein Datenlogger, der zyklisch betrieben wird, gelegentlich von einem Rechner überwacht werden, dann ist der neue ‘Monitor-Mode’ zu verwenden. Die interne zyklische Abfrage wird durch die Softwareabfrage in keiner Weise beeinflusst (In der Win-Control ‘sichere Initialisierung’ ausschalten!)

In der Funktion **Mode** die Variante **Monitor** programmieren:

Fail-Save-Mode:
Soll bei einer reinen Softwareabfrage nur dafür gesorgt werden, dass bei einem Ausfall des Rechners eine interne zyklische Abfrage weiterläuft, dann ist der Fail-Save-Mode angebracht. In dieser Betriebsart muss im Gerät ein größerer Zyklus programmiert werden, als für die Softwareabfrage. Durch die Softwareabfrage wird der interne Zyklus immer wieder zurückgesetzt, sodass er nur zum Einsatz kommt, wenn die Softwareabfrage ausfällt (Auch hier in der Win-Control ‘sichere Initialisierung’ ausschalten!).
Der interne Zyklus wird beim Start durch die Software Win-Control gestartet, er kann aber auch vorher schon gestartet sein. Bei der Abfrage durch den internen Zyklus erfolgt keine Datenausgabe auf die Schnittstelle. Zur Aufnahme von Daten muss der Speicher aktiviert sein.

In der Funktion **Mode** die Variante **FailSave** programmieren:
12. Programmieren mit Programmier-Menüs

12.2.6 Speicherausgabe

Bei externen Speichercards (s. 12.2.1) lassen sich nur die kompletten Messdaten der zuletzt verwendeten Datei im Tabellenmode auslesen. Dafür ist nur die Taste PRINT der Funktion Speicher Frei im Menü Speicherausgabe oder einigen Messmenüs zu verwenden.

Sinnvollerweise wird die Speicherkarte abgezogen und die Dateien über einen USB-Kartenleser direkt in den PC kopiert. Diese lassen sich sowohl in Excel als auch Win-Control (ab V.4.9) importieren.

Menü Speicherausgabe:
Ausgabeformat einstellen (s. 12.1.2):
Ausgabeform: Liste

Zur Auswahl einer nummerierten Messung:
Nummer: 12-001

Zur Auswahl eines Zeitausschnittes:
Anfangzeit: 07:00:00
Endezeit: 17:00:00

Messwertspeicher komplett ausgeben:
Zeitausschnitt von Anfang bis Ende ausgeben:
Abbrechen der Speicherausgabe mit Taste:

Der interne Speicherinhalt wird mit dem gleichen Druckbild wie bei Druckerbetrieb ausgegeben, auch mehrmals und in verschiedenen Formaten (nicht Speichercard) (s.a. Hb. 6.6.1).
Messwertspeicher

Während der Speicherausgabe wird in der Funktion **Ausgabe Rest** laufend der Speicherumfang in kB angezeigt, der noch auszugeben ist. Zeit, Datum und Nummer zeigen die gerade laufenden Werte.

Rest der Speicherausgabe
Ifde. Nummer der Speicherausgabe
Ifde. Zeit und Datum der Speicherausgabe

Speicher löschen
Funktion **Speicher Frei** anwählen (s. 10.4):

Zum Speicher löschen drücken Sie die Taste:
• Bei Speichercards wird die Karte formatiert und alle Dateien gelöscht!
as Speicherplatz erscheint die volle Kapazität:
Abbruch mit Taste:

12.3 Fühlerprogrammierung

Im Menü **FÜHLERPROGRAMMIERUNG** können alle Parameter eines Kanals kontrolliert und über die Tastatur eingeben bzw. geändert werden, sofern der entsprechende Fühlerstecker angesteckt ist. Dabei ist zu beachten, dass Serienfühler mit dem Verriegelungsmodus vor unbeabsichtigtem Ändern geschützt sind und bei gewünschter Änderung die Verriegelungsstufe erst entsprechend erniedrigt werden muss (s. 12.3.4). Die Funktionen sind nur anwendbar, soweit es der Verriegelungsmodus erlaubt, der Rest erscheint grau.

Ausgabe der Fühlerprogrammierung aller aktiven Messstellen (Befehl P15 s. Hb. 6.2.3) mit Taste:

12.3.1 Eingabekanal anwählen
Um die Parameter eines Fühlers abzufragen oder zu programmieren, müssen Sie zuerst das Menü **FÜHLERPROGRAMMIERUNG** anwählen und dann den gewünschten Eingabekanal mit den Taste ▲ oder ▼ einstellen. Dabei werden nur angesteckte Fühler und aktivierte Kanäle berücksichtigt. Um neue Kanäle aktivieren zu können, kann man mit der Taste <MALL> die Anwahl al-
12. Programmieren mit Programmier-Menüs

Ken Kanäle ermöglichen. Mit der Taste <MACT> reduzieren Sie die Anwahl wieder auf die aktiven. Zu jedem Eingabekanal wird die zugehörige Steckernummer angezeigt.

Menü FÜHLERPROGRAMMIERUNG:
Darstellung von Steckernummer und Kanal: Stecker:0 Kanal:00
Nächsten Eingabekanal anwählen mit Taste: Vorherigen Eingabekanal anwählen mit Taste: Anwahl aller möglichen Kanäle zulassen: Anwahl auf alle aktiven Kanäle reduzieren:

12.3.2 Messstellenbezeichnung

Eingabe in Funktion ‘Kommentar’ s. 10.5
Kommentar: Temperatur
Einige Steuerzeichen am Anfang des Kommentar haben Sonderfunktionen:
‘*J‘ definiert einen Temperatursensor (Ntc, Pt100) als externe VK (s. 11.2.7, Hb. 6.7.3).
‘#J‘ bedeutet bei einem Thermoelement: internen Vergleichsstellensensor verwenden (z.B. Stecker ZA9400-FSx mit Ntc, s. 11.2.7, Hb. 6.7.3).
‘*T‘ definiert einen Temperatursensor (Ntc, Pt100) als Referenz zur Temperaturkompensation (s. 11.2.5).
‘*P‘ definiert einen Luftdrucksensor als Referenz zur Luftdruckkompensation (s. 11.2.6).
‘#N‘ bewirkt bei Strömungsmessung Umrechnung auf Normbedingungen (s. 11.4.9). Die restlichen 8 Zeichen können noch für die eigene Beschreibung verwendet werden.
Ein ‘!‘ am Ende zeigt automatisch eine eigene Linearisierung bzw. Kalibration an (s. 12.3.11). Es ist nicht überschreibbar.

12.3.3 Mittelmodus
Die Arten der Mittelwertbildung, die über die Funktion Mittelmodus bestimmt werden, sind in Kapitel 11.4.2 beschrieben.

Funktion keine Mittelwertbildung: Mittelmodus: ----- Mittelwertbildung über alle laufenden Messstellenabfragen: Mittelwertbildung über alle Abfragen in einem Zyklus:

12.3.4 Verriegelung der Fühlerprogrammierung
Die Funktionsparameter jeder Messstelle sind durch den Verriegelungsmodus bis zu einer einstellbaren Verriegelungsstufe geschützt (s. Hb. 6.3.12). Vor ei-
Fühlerprogrammierung

ner Programmierung muss der Verriegelungsmodus entsprechend erniedrigt werden. Ist im Display hinter dem Verriegelungsmodus ein Punkt sichtbar, dann ist eine Änderung nicht möglich.

Verriegelungsstufe	**Verriegelte Funktionen**
0 | keine
1 | Messbereich + Elementflags + Ausgabemodus
3 | + Dimension
4 | + Nullpunkt- und Steigungskorrektur
5 | + Basismwert, Faktor, Exponent
6 | + Analogausgang Anfang und Ende + Nullpunktabgleich temporär
7 | + Grenzwerte Max und Min

Funktion ‘Verriegelungsmodus’:

Verriegelung: 5

Im Menü **FÜHLERPROGRAMMIERUNG** sind die Funktionen von oben nach unten so angeordnet, dass die verriegelten Funktionen nicht anwählbar sind.

12.3.5 Grenzwerte

Zu jedem Messkanal sind zwei Grenzwerte (MAX und MIN) programmierbar. Das Überschreiten der Grenzwerte wird wie das Überschreiten der Messbereichsgrenzen und Fühlerbruch als Störung behandelt. Im Display erscheint vor dem Messwert ein entsprechender Pfeil ▲ oder ▼, ein Alarmsignal ertönt (Abschalten s. 12.5.8) und Alarmrelais eines angesteckten Relaiskabels sprechen an (s. 12.6.2). Den Grenzwerten können auch Relais zugeordnet werden (s. 12.4.3). Der Alarmzustand bleibt solange bestehen, bis der Messwert den Grenzwert um die Hysterese wieder unterschritten hat. Die Hysterese beträgt normal 10 Digit, kann aber im Bereich 0 bis 99 Digit eingestellt werden (s. 12.5.7). Die Grenzwertüberschreitung ist auch zum Starten oder Stoppen einer Messung einsetzbar (s. 12.4.3).

Funktion:
- Grenzwert Max eingeben (s. 10.5):
 - 7 Grenzw.Max: 123.4°C
- Grenzwert Min:
 - 7 Grenzw.Min: ----°C
- Grenzwert Ausschalten:
 - <OFF>
- Grenzwert Einschalten:
 - <ON>

12.3.6 Skalierung, Dezimalpunkteinstellung

Um das elektrische Signal eines Sensors als Messwert in der physikalischen Größe anzeigen zu können, ist fast immer eine Nullpunktverschiebung und eine Multiplikation mit einem Faktor nötig. Dafür stehen die Funktionen BASIS und FAKTOR zur Verfügung. Eine ausführliche Beschreibung der Skalierung mit Beispiel finden Sie im Handbuch Kap. 6.3.11.

Angezeigter Wert = (korrigerter Messwert - BASIS) x FAKTOR.

Der FAKTOR ist im Bereich -2.0000 bis +2.0000 programmierbar. Für Faktoren über 2.0 oder unter 0.2 ist eine entsprechende Dezimalpunkteinstellung
12. Programmieren mit Programmier-Menüs

durch Eingabe des EXPONENTEN vorzusehen. Mit dem EXPONENTEN kann das Komma soweit nach links (-) oder nach rechts (+) verschoben werden, wie es auf dem Display und Drucker darstellbar ist. Eine Exponentialdarstellung der Messwerte ist nicht möglich.

Zur automatischen Berechnung der Skalierwerte:

5 Basiswert:	------
5 Faktor:	------
5 Exponent:	0

aus Ist- und Sollwerten gibt es bei den AS-SISTENT-Menüs ein eigenes Menü SKALIERUNG.

Sind Skalierwerte programmiert und damit der tatsächliche Messwert verändert, dann erscheint als Messwertstatus (s. 10.2) der Korrekturpfeil.

12.3.7 Korrekturwerte

Mit den Korrekturwerten NULLPUNKT und STEIGUNG können Fühler in Nullpunkt und Steigung korrigiert werden (s. Hb. 6.3.10).

Korrigierter Messwert = (Messwert - NULLPUNKT) x STEIGUNG.

Funktion:

Nullpunktkorrektur: 4 NullPunkt: ------°C
Steigungskorrektur: 4 Steigung: ------°C

Tasten zum Ausschalten und Einschalten: <OFF> oder <ON>

Sind Skalierwerte programmiert und damit der tatsächliche Messwert verändert, dann erscheint als Messwertstatus (s. 10.2) der Korrekturpfeil.

Zur Erreichung maximaler Genauigkeit ist jetzt mit der Option KL auch eine Mehrpunktcalibration von Fühlern möglich (s. 12.3.11).

12.3.8 Dimensionsänderung

Bei jedem Messkanal ist es möglich, die Standarddimension des Messbereichs durch eine beliebige zweistellige Dimension zu ersetzen (s.a. Hb. 6.3.5). Außer Groß- und Kleinbuchstaben stehen die Zeichen °, Ω, %, !, [,], *, -, =, ~ und Leerzeichen (_) zur Verfügung. Die Dimension wird mit zwei Zeichen jeweils hinter den Mess- und Programmierwerten angezeigt.
Fühlerprogrammierung

Zur Änderung der Dimension dient die Funktion:

Bei Eingabe der Dimension °F wird ein Temperaturwert von Grad Celsius in Grad Fahrenheit umgerechnet. Mit dem Zeichen !C wird die Vergleichsstellenkompensation abgeschaltet.

Folgende Dimensionen werden automatisch durch die Eingabe von 2 entsprechenden Zeichen generiert: mIs bei ms, m³lh bei mh, WIm² bei Wm, g/k bei gk.

12.3.9 Messbereichswahl

Wenn Sie die Stecker selbst programmieren wollen, oder den Messbereich häufig ändern müssen, dann ist darauf zu achten, dass die Verriegelung der Stecker gelöscht, d.h. auf 0 gesetzt ist (s. 12.3.4) und bei einigen Messwertgebern ein spezieller Stecker erforderlich ist (z. B. Thermo, Shunt, Teiler etc., s. Tabelle). Um einen neuen Messkanal zu aktivieren, mit Taste <MALL> alle Kanäle aktivieren, den entsprechenden Eingabekanal anwählen (s. 12.3.1) und dann den Messbereich eingeben. Bei der Eingabebestätigung des neuen Messbereichs werden alle Programmierwerte des Eingabekanals gelöscht.

Funktion Messbereichswahl:

u.U. Anwahl aller möglichen Messkanäle zulassen:

Ausschalten, d.h. Deaktivieren eines Kanals:

Einschalten, d.h. wieder Aktivieren des Kanals:

Programmieren des Bereichs wie Dateneingabe 10.5

Im Eingabefenster erscheinen sukzessiv alle Kürzel aus folgender Tabelle:

<table>
<thead>
<tr>
<th>Messwertgeber</th>
<th>Stecker/Kabel/ Fühler</th>
<th>Messbereich</th>
<th>Dim</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt100-1 ITS90</td>
<td>ZA 9000-FS</td>
<td>-200.0...+850.0 °C</td>
<td>P104</td>
<td></td>
</tr>
<tr>
<td>Pt100-2 ITS90</td>
<td>ZA 9000-FS</td>
<td>-200.00...+400.00 °C</td>
<td>P204</td>
<td></td>
</tr>
<tr>
<td>Pt1000-1 ITS90 (Elementflag 1)</td>
<td>ZA 9000-FS</td>
<td>-200.0...+850.0 °C</td>
<td>P104</td>
<td></td>
</tr>
<tr>
<td>Pt1000-2 ITS90 (Elementflag 1)</td>
<td>ZA 9000-FS</td>
<td>-200.0...+400.00 °C</td>
<td>P204</td>
<td></td>
</tr>
<tr>
<td>Pt1000-3 ITS90</td>
<td>ZA 9000-FS</td>
<td>0.000...+65.000 °C</td>
<td>P304</td>
<td></td>
</tr>
<tr>
<td>Ni100</td>
<td>ZA 9000-FS</td>
<td>-60.0...+240.0 °C</td>
<td>N104</td>
<td></td>
</tr>
<tr>
<td>NiCr-Ni (K) ITS90</td>
<td>ZA 9020-FS</td>
<td>-200.0...+1370.0 °C</td>
<td>NiCr</td>
<td></td>
</tr>
<tr>
<td>NiCr-Ni (K) ITS90 **</td>
<td>ZA 9020-SS2</td>
<td>-100.00...+500.00 °C</td>
<td>NiC2</td>
<td></td>
</tr>
<tr>
<td>NiCroSil-NiSil (N) ITS90</td>
<td>ZA 9020-FS</td>
<td>-200.0...+1300.0 °C</td>
<td>NiSi</td>
<td></td>
</tr>
<tr>
<td>Fe-CuNi (L)</td>
<td>ZA 9021-FSL</td>
<td>-200.0...+900.0 °C</td>
<td>FeCo</td>
<td></td>
</tr>
<tr>
<td>Fe-CuNi (J) ITS90</td>
<td>ZA 9021-FSJ</td>
<td>-200.0...+1000.0 °C</td>
<td>IrCo</td>
<td></td>
</tr>
<tr>
<td>Cu-CuNi (U)</td>
<td>ZA 9000-FS</td>
<td>-200.0...+600.0 °C</td>
<td>CuCo</td>
<td></td>
</tr>
<tr>
<td>Cu-CuNi (T) ITS90</td>
<td>ZA 9021-FST</td>
<td>-200.0...+400.0 °C</td>
<td>CoCo</td>
<td></td>
</tr>
</tbody>
</table>
Programmieren mit Programmier-Menüs

<table>
<thead>
<tr>
<th>Messwertgeber</th>
<th>Stecker/Kabel/ Fühler</th>
<th>Messbereich</th>
<th>Dim</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtRh10-Pt (S) ITS90</td>
<td>ZA 9000-FS</td>
<td>0.0...+1760.0 °C</td>
<td>Pt10</td>
<td></td>
</tr>
<tr>
<td>PtRh13-Pt (R) ITS90</td>
<td>ZA 9000-FS</td>
<td>0.0...+1760.0 °C</td>
<td>Pt13</td>
<td></td>
</tr>
<tr>
<td>PtRh30-PtRh6 (B) ITS90</td>
<td>ZA 9000-FS</td>
<td>+400.0...+1800.0 °C</td>
<td>EL18</td>
<td></td>
</tr>
<tr>
<td>Au-FeCr</td>
<td>ZA 9000-FS</td>
<td>-270.0... +60.0 °C</td>
<td>AuFe</td>
<td></td>
</tr>
<tr>
<td>W5Re-W26Re (C) **</td>
<td>ZA 9000-SSC</td>
<td>0.0...+2320.0 °C</td>
<td>WR26</td>
<td></td>
</tr>
<tr>
<td>Ntc Typ N</td>
<td>ZA 9000-FS</td>
<td>-50.00...+125.00 °C</td>
<td>Ntc</td>
<td></td>
</tr>
<tr>
<td>Ntc Typ N ++</td>
<td>ZA 9040-SS3</td>
<td>0.000...+45.000 °C</td>
<td>Ntc3</td>
<td></td>
</tr>
<tr>
<td>Ptc Typ Kty84 ++</td>
<td>ZA 9040-SS4</td>
<td>-0.0...+200.0 °C</td>
<td>KTY</td>
<td></td>
</tr>
<tr>
<td>Millivolt 1</td>
<td>ZA 9000-FS</td>
<td>-26.000...+26.000 mV</td>
<td>mV 1</td>
<td></td>
</tr>
<tr>
<td>Millivolt</td>
<td>ZA 9000-FS</td>
<td>-10.000...+55.000 mV</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Millivolt 2</td>
<td>ZA 9000-FS</td>
<td>-260.00...+260.00 mV</td>
<td>mV 2</td>
<td></td>
</tr>
<tr>
<td>Volt</td>
<td>ZA 9000-FS</td>
<td>-2.6000...+2.6000 V</td>
<td>Volt</td>
<td></td>
</tr>
<tr>
<td>Differenz Millivolt 1</td>
<td>ZA 9000-FS</td>
<td>-26.000...+26.000 mV</td>
<td>D 26</td>
<td></td>
</tr>
<tr>
<td>Differenz Millivolt</td>
<td>ZA 9000-FS</td>
<td>-10.000...+55.000 mV</td>
<td>D 55</td>
<td></td>
</tr>
<tr>
<td>Differenz Millivolt 2</td>
<td>ZA 9000-FS</td>
<td>-260.00...+260.00 mV</td>
<td>D260</td>
<td></td>
</tr>
<tr>
<td>Differenz Volt</td>
<td>ZA 9000-FS</td>
<td>-2.6000...+2.6000 V</td>
<td>D2.6</td>
<td></td>
</tr>
<tr>
<td>Fühlerspannung</td>
<td>beliebig</td>
<td>0.00...20.00 V</td>
<td>Batt</td>
<td></td>
</tr>
<tr>
<td>Milliampere</td>
<td>ZA 9601-FS</td>
<td>-32.000...+32.000 mA</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Prozent (4-20mA)</td>
<td>ZA 9001-FS</td>
<td>0.00...100.00 %</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Ohm **</td>
<td>ZA 9000-FS</td>
<td>0.00...400.00 Ω</td>
<td>Ohm</td>
<td></td>
</tr>
<tr>
<td>Frequenz</td>
<td>ZA 9909-AK</td>
<td>0...25000 Hz</td>
<td>Freq</td>
<td></td>
</tr>
<tr>
<td>Impulse</td>
<td>ZA 9909-AK</td>
<td>0...65000 Puls</td>
<td>Puls</td>
<td></td>
</tr>
<tr>
<td>Digitaleingang</td>
<td>ZA 9000-EK2</td>
<td>0.0...100.0 %</td>
<td>Inp</td>
<td></td>
</tr>
<tr>
<td>Digitale Schnittstelle</td>
<td>ZA 9919-AKxx</td>
<td>-65000...+65000</td>
<td>DIGI</td>
<td></td>
</tr>
<tr>
<td>Infrarot 1</td>
<td>FI A628-1/5</td>
<td>0.0...+200.0 °C</td>
<td>Ir 1</td>
<td></td>
</tr>
<tr>
<td>Infrarot 4</td>
<td>FI A628-4</td>
<td>-30.0...+100.0 °C</td>
<td>Ir 4</td>
<td></td>
</tr>
<tr>
<td>Infrarot 6</td>
<td>FI A628-6</td>
<td>0.0...+500.0 °C</td>
<td>Ir 6</td>
<td></td>
</tr>
<tr>
<td>Flügelrad Normal 20</td>
<td>FV A915-S120</td>
<td>0.30...20.00 m/s</td>
<td>S120</td>
<td></td>
</tr>
<tr>
<td>Flügelrad Normal 40</td>
<td>FV A915-S140</td>
<td>0.40...40.00 m/s</td>
<td>S140</td>
<td></td>
</tr>
<tr>
<td>Flügelrad Mikro 20</td>
<td>FV A915-S220</td>
<td>0.50...20.00 m/s</td>
<td>S220</td>
<td></td>
</tr>
<tr>
<td>Flügelrad Mikro 40</td>
<td>FV A915-S240</td>
<td>0.60...40.00 m/s</td>
<td>S240</td>
<td></td>
</tr>
<tr>
<td>Flügelrad Makro</td>
<td>FV A915-MA1</td>
<td>0.10...20.00 m/s</td>
<td>L420</td>
<td></td>
</tr>
<tr>
<td>Wasserturbine-Mikro</td>
<td>FV A915-WM1</td>
<td>0.00...5.00 m/s</td>
<td>L605</td>
<td></td>
</tr>
<tr>
<td>Staudruck 40m/s m. TK u. LK</td>
<td>FD A612-M1</td>
<td>0.50...40.00 m/s</td>
<td>L840</td>
<td></td>
</tr>
<tr>
<td>Staudruck 90 m/s m. TK u. LK</td>
<td>FD A612-M6</td>
<td>1.00...90.00 m/s</td>
<td>L890</td>
<td></td>
</tr>
<tr>
<td>Strömungssensor SS20 ++</td>
<td>ZA9602-SSS</td>
<td>0.50...20.00 m/s</td>
<td>L920</td>
<td></td>
</tr>
<tr>
<td>Rel. Luftfeuchte kap.</td>
<td>FH A646</td>
<td>0.0...100.0 %H</td>
<td>H crH</td>
<td></td>
</tr>
<tr>
<td>Rel. Luftfeuchte kap. m. TK</td>
<td>FH A646-C</td>
<td>0.0...100.0 %H</td>
<td>H crH</td>
<td></td>
</tr>
<tr>
<td>Rel. Luftfeuchte kap. m. TK</td>
<td>FH A646-R</td>
<td>0.0...100.0 %H</td>
<td>H rH</td>
<td></td>
</tr>
<tr>
<td>Feuchttemperatur HT</td>
<td>FN A846</td>
<td>-30.00...+125.00 °C</td>
<td>P HT</td>
<td></td>
</tr>
<tr>
<td>Leitfähigkeitssonde m. TK</td>
<td>FY A641-LF</td>
<td>0.0...20.000 mS</td>
<td>LF</td>
<td></td>
</tr>
</tbody>
</table>
Messwertgeber

<table>
<thead>
<tr>
<th>Sensor/Bezugskanal</th>
<th>Stecker/Kabel/Stecker</th>
<th>Messbereich</th>
<th>Einheit</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂-Sensor</td>
<td>FY A600-CO2</td>
<td>0.0 ... 2.500</td>
<td>%</td>
<td>CO₂</td>
</tr>
<tr>
<td>O₂-Sättigung m. TK u. LK</td>
<td>FY A640-O2</td>
<td>0 ... 260</td>
<td>%</td>
<td>O₂-S</td>
</tr>
<tr>
<td>O₂-Konzentration m. TK</td>
<td>FY A640-O2</td>
<td>0 ... 40.0</td>
<td>mg/l</td>
<td>O₂-C</td>
</tr>
</tbody>
</table>

Funktionskanäle s. 12.3.10

<table>
<thead>
<tr>
<th>Funktion/Bezugskanal</th>
<th>Stecker/Kabel/Stecker</th>
<th>Messbereich</th>
<th>Einheit</th>
<th>Anzeige</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Mischungsverhältnis m. LK</td>
<td>FY A646</td>
<td>0.0 ... 500.0</td>
<td>g/kg</td>
<td>H AH</td>
</tr>
<tr>
<td>* Taupunkttemperatur</td>
<td>FY A646</td>
<td>-25.0... 100.0</td>
<td>°C</td>
<td>H DT</td>
</tr>
<tr>
<td>* Partialdampfdruck</td>
<td>FY A646</td>
<td>0.0 ...1050.0</td>
<td>mbar</td>
<td>H VP</td>
</tr>
<tr>
<td>* Enthalpie m. LK</td>
<td>FY A646</td>
<td>0.0 ... 400.0</td>
<td>kJ/kg</td>
<td>H En</td>
</tr>
<tr>
<td>* Rel. Feuchte psychr. m. LK</td>
<td>FN A846</td>
<td>0.0 ... 100.0</td>
<td>%</td>
<td>P RH</td>
</tr>
<tr>
<td>* Mischungsverhältnis m. LK</td>
<td>FN A846</td>
<td>0.0 ... 500.0</td>
<td>g/kg</td>
<td>P AH</td>
</tr>
<tr>
<td>* Taupunkttemperatur m. LK</td>
<td>FN A846</td>
<td>-25.0 ... +100.0</td>
<td>°C</td>
<td>P DT</td>
</tr>
<tr>
<td>* Partialdampfdruck m. LK</td>
<td>FN A846</td>
<td>0.0 ...1050.0</td>
<td>mbar</td>
<td>P VP</td>
</tr>
</tbody>
</table>

Sonderfunktionen

- **Messwert (Mb1)** beliebig \(f(Mb1) \) Mess
- **Differenz (Mb1-Mb2)** beliebig \(f(Mb1) \) Diff
- **Maximalwert (Mb1)** beliebig \(f(Mb1) \) Max
- **Minimalwert (Mb1)** beliebig \(f(Mb1) \) Min
- **Mittelwert über Zeit (Mb1)** beliebig \(f(Mb1) \) M(t)
- **Anzahl gemittelter Werte (Mb1)** beliebig \(n(t) \)
- **Mittelw. über Messst. (Mb2..Mb1)** beliebig \(f(Mb1) \) M(n)
- **Summe über Messst. (Mb2..Mb1)** beliebig \(f(Mb1) \) S(n)
- **Gesamtpulszahl (Mb1)** \(\text{ZA 9909-AK} \) s.Hb.6.7.1 0..65000 \% Alrm
- **Pulszahl/Druckzyklus (Mb1)** \(\text{ZA 9909-AK} \) s.Hb.6.7.1 0..65000 \% Sp
- **Alarmwert (Mb1)** beliebig \(s.12.4.5 \) 0/100 \% Alrm
- **Wärmekoeffizient \(\frac{q}{(M01-M00)} \)** \(\text{ZA 9000-FS} \) s.11.6.1 \(\text{W/m²K} \) q/dT
- **Wet-Bulb-Globe-Temp.** \(\text{ZA 9000-FS} \) s.11.6.2 \(°C \) WBGT
- **Vergleichsstellentemperatur** beliebig \(s.11.2.7 \) \(°C \) CJ
- **Volumenstrom \(m³/h \)** \(MB1 \cdot Q \) \(s.11.4.9 \) \(m³/h \) Flow
- **Timer** beliebig \(s.11.4.6 \) 0...65000 \ s Time
- **Temperatur Kältemittel R22 °C** \(\text{FDA602Lx} \) -90.0...+79.0 \(°C \) R22
- **Temperatur Kältemittel R23 °C** \(\text{FDA602Lx} \) -100.0...+26.0 \(°C \) R23
- **Temperatur Kältemittel R134a °C** \(\text{FDA602Lx} \) -75.0...+101.0 \(°C \) R134
- **Temperatur Kältemittel R404a °C** \(\text{FDA602Lx} \) -60.0...+65.0 \(°C \) R404
- **Temperatur Kältemittel R407c °C** \(\text{FDA602Lx} \) -50.0...+86.0 \(°C \) R407
- **Temperatur Kältemittel R410 °C** \(\text{FDA602Lx} \) -70.0...+70.0 \(°C \) R410
- **Temperatur Kältemittel R417a °C** \(\text{FDA602Lx} \) -50.0...+70.0 \(°C \) R417
- **Temperatur Kältemittel R507 °C** \(\text{FDA602Lx} \) -70.0...+70.0 \(°C \) R507

TK Temperaturkompensation, LK Luftdruckkompensation, Mbx Bezugskanäle
- * Feuchterechengrößen (Mb1=Temperatur, Mb2=Feuchte/Feuchttemperatur)
- ** Nur über Sonderstecker mit interner Kennlinie (s. 12.3.11, andere auf Anfrage)
- ° 8 Messbereiche für Kältemittel nur mit Geräteoption R (Mb1=Druck in mbar)
12. Programmieren mit Programmier-Menüs

12.3.10 Funktionskanäle

Am Ende der Bereichstabelle (s.o.) findet man unter der Rubrik Funktionen-Kanäle eine Reihe von Bereichen, die es erlauben, Funktionsparameter der Messwertverarbeitung oder Rechenergebnisse aus der Verknüpfung von bestimmten Messwerten auf Messkanälen darzustellen (s. Hb. 6.3.4). Der Bezug zu den eigentlichen Messkanälen wird durch ein oder zwei Bezugskanäle hergestellt. Für alle Funktionskanäle gibt es Standardbezugskanäle Mb1 und Mb2 im entsprechenden Stecker, bei denen keine Programmierung der Bezugskanäle nötig ist:

<table>
<thead>
<tr>
<th>Funktion</th>
<th>Funktionskanal</th>
<th>Bezugskanal1</th>
<th>Bezugskanal2</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Feuchtegrößen kap.</td>
<td>auf 3. oder 4. Kanal</td>
<td>Mb1=Temperatur</td>
<td>Mb2=Feuchte</td>
</tr>
<tr>
<td>* Feuchtegrößen psychr.</td>
<td>auf 3. oder 4. Kanal</td>
<td>Mb1=TT</td>
<td>Mb2=HT</td>
</tr>
<tr>
<td>Funktionsparameter (Mb1)</td>
<td>auf 2., 3. oder 4. Kanal</td>
<td>Mb1= 1. Kanal</td>
<td></td>
</tr>
<tr>
<td>Differenz (Mb1-Mb2)</td>
<td>auf 2., 3., 4. Kanal (Mb1)</td>
<td>Mb1= 1. Kanal</td>
<td>Mb2=M00</td>
</tr>
<tr>
<td>Mittelwert über Mb2..Mb1</td>
<td>auf 2., 3., 4. Kanal (Mb1)</td>
<td>Mb1= 1. Kanal</td>
<td>Mb2=M00</td>
</tr>
<tr>
<td>Summe über Mb2..Mb1</td>
<td>auf 2., 3., 4. Kanal (Mb1)</td>
<td>Mb1= 1. Kanal</td>
<td>Mb2=M00</td>
</tr>
<tr>
<td>$q/(M01-M00)$</td>
<td>auf 2., 3., 4. Kanal (Mb1)</td>
<td>Mb1= 1. Kanal</td>
<td>Mb2=M00</td>
</tr>
<tr>
<td>WBGT</td>
<td>auf 2. Kanal (GT)</td>
<td>Mb1= 1. Kanal</td>
<td>Mb2=M00</td>
</tr>
</tbody>
</table>

Anordnung der Kanäle in den Steckern:

Nach der Programmierung des Bereichs werden die Standardbezugskanäle (s.o.) eingesetzt. Die individuelle Einstellung der Bezugskanäle wird in 12.4.6 beschrieben. Am besten verwendet man den Assistenten Funktionskanäle.

Neu sind die 4 geräteinternen Kanäle. M9 ist standardmäßig als Differenzkanal M1–M0 programmiert, wenn zwei Fühler mit gleicher Dimension und Kom mastelle auf den Messstellen M0 und M1 stecken. Alle 4 Kanäle sind jedoch mit beliebigen Funktionskanälen mit den Standardbezugskanälen Mb1 = M1 und Mb2 = M0 verwendbar, d.h. wenn Sie einen Funktionsparameter ohne Bezugs kanal geräteintern programmieren wollen, muss der Fühler auf M1 stecken.

Vorteil der geräteinternen Kanäle:

bei Einsatz mehrerer Fühler für die gleiche Anwendung müssen die Fühler nicht umprogrammiert werden und können getauscht werden, ohne die Funktionskanäle zu verlieren. Hängt die ganze Applikation jedoch nur an einem Fühler, dann ist eher die Programmierung im Fühler sinnvoll.

70 ALMEMO® 5690-2M
12.3.11 Sondermessbereiche, Linearisierung, Mehrpunktkalibration
Mit Hilfe neuer ALMEMO-Stecker mit Zusatzspeicher für zusätzliche Kenn-
daten (größeres EEPROM, Kennung E4) lassen sich erstmals folgende Aufga-
ben elegant realisieren:
1. Bereitstellung von Sondermessbereichen mit interner Kennlinie (s. 12.3.9)
2. Linearisierung von Spannungs-, Strom-, Widerstands- oder Frequenz-Signa-
len durch den Anwender.
3. Mehrpunktkalibration aller Fühler.
4. Seriennummern- und Kalibrierdatenverwaltung im Fühler.
Die Anlage 5690-2M kann serienmäßig alle entsprechend programmierten Ste-
cker auswerten, aber nur auf der Mastermesskreiskarte. Auf Umschalterkarten
sind Sonderbereiche verwendbar, wenn sie die gleiche Kennlinie wie Kanal M8
verwenden. Mit der Option KL ist es möglich, eine Kennlinie von bis zu 35 Stütz-
werten über die Software AMR-Control in das EEPROM des ALMEMO-Steckers
selbst zu programmieren. Bei der Messung werden die Meßwerte dazwischen li-
near interpoliert. Bei der Korrektur von nichtlinearen Fühlern (z.B. bei Pt100-
oder Thermoelementfühlern) werden zunächst die ursprünglichen Kennlinien be-
rücksichtigt und dann nur die Abweichungen linear interpoliert hinzugefügt.

Kernung für eigene Linearisierung/Kalibration: Kommentar mit ! Temperatu!
Wird ein Kanal mit Kennlinie deaktiviert oder mit einem anderen Bereich pro-
grammiert, dann ist die Kennlinie später wieder aktivierbar, indem man den
Sonderbereich ´Lin´ per Tastatur oder mit dem Befehl ´B99´ programmiert.
Außerdem können im erweiterten Stecker die Bestellnummer, die Seriennum-
mer, das Datum zur nächsten Kalibrierung und das Kalibrierintervall eingetra-
gen werden. Damit ist auch in vernetzten Systemen eine automatische Über-
wachung der Kalibrierintervalle möglich (s. 12.8).

12.4 Spezialfunktionen
Bei der Messwerterfassungsanlage 5690-2M sind in einem eigenen Menü alle ALMEMO®-
Spezialfunktionen zugänglich, die im Routine-
betrieb zwar selten benötigt werden, aber bei manchen Anwendungen doch sehr nützlich
sind (s. Hb. 6.10). Diese Funktionen sind teil-
weise sehr komplex und sollten daher nur verw-
edet werden, wenn die Wirkungsweise völ-
lig klar geworden ist.
12.4.1 Druckzyklusfaktor
Zur Anpassung der Datenaufzeichnung an die Änderungsgeschwindigkeit der einzelnen Messstellen ist es möglich, manche Messstellen durch Programmierung eines Druckzyklusfaktors zwischen 00 und 99 weniger oft oder gar nicht auszugeben (s. Hb. 6.10.6). Standardmäßig ist der Druckzyklusfaktor aller Messstellen gelöscht bzw. auf 01 gesetzt, d.h. alle aktivierten Messstellen werden bei jedem Zyklus ausgegeben. Wird ein anderer Faktor z.B. 10 eingegeben, so wird die entsprechende Messstelle nur bei jedem 10. Mal, bei 00 dagegen gar nicht ausgegeben. Auch bei Datenspeicherung lassen sich unnötige Messwerte unterdrücken und damit Speicherplatz sparen.

Druckzyklusfaktor eingeben (s. 10.5) in Funktion: Druckzyklusfaktor: 01
Druckzyklusfaktor löschen mit Taste: CLR

12.4.2 Minimale Fühlerversorgungsspannung
Wie bei allen ALMEMO®-Geräten wird auch beim 5690-2M die Fühlerversorgungsspannung überwacht. Sie wird im Menü Stromversorgung (s. 12.7) auch angezeigt. Es gibt aber Sensoren, die für einen ordnungsmäßigen Betrieb eine Versorgungsspannung benötigen, die einen geladenen Akku oder ein Netzteil erfordern. Um Messfehler zu verhindern, kann im Menü Spezialfunktionen für jeden Messwertgeber individuell die minimal benötigte Fühlerspannung eingetragen werden. Wird diese unterschritten, dann wird der Messwert als Fühlerbruch behandelt (Anzeige ´L´ blinkt).

Eingabe minimale Fühlerversorgungsspannung: U-Sensor Min: 12.0 V
Spannungskontrolle ausschalten, Wert löschen: CLR
U-Sensor Min: ---- V
12.4.3 Grenzwertaktionen

Relaiszuordnung
Zur Alarmmeldung bei Grenzwertüberschrei-
tungen stehen Alarmlrelaiskabel oder neue
V6-Relais-Adapter zur Verfügung. Diese
Relais können individuell als Gesamtalarm
oder Max- und Min-Alarm getrennt konfigu-
rirt, oder einzelnen Grenzwerten zugeordnet
werden (s. 12.6).

Wenn Störungen selektiv erkannt und aus-
gewertet werden müssen, dann kann man
einfach im Assistent-Menü Grenzwert,
Alarm Grenzwerte festlegen und ihnen ein-
zeln Relais zuordnen (s. Hb. 6.10.8). Es dür-
fen auch mehreren Grenzwerten das gleiche Relais zugeordnet werden. Ist der
Relaisadapter angesteckt, dann wird das entsprechende Relais automatisch
auf Variante 2 (int. zugeordnet) eingestellt. Andernfalls muß es später so konfi-
guriert werden.

Alternativ stehen im Programmiermenü Spezialfunktionen die Funktionen:

Aktion Max, **Aktion Min** zur Verfügung:

Aktivieren Relais xx bei Grenzwert Max:

Aktivieren Relais yy bei Grenzwert Min:

Relaiszuordnung löschen mit Taste:

Im Menü Ausgangsmodule können Sie die Relais konfigurieren:

Einstellen des Port 20 auf Buchse A2

ein Schließer-Halbleiter-Relais

auf Variante 2 (Relais int. zugeordnet)

Steuerung einer Messung

Grenzwertüberschreitungen können Sie nicht nur für Alarmmeldungen, son-
dern auch zur Steuerung einer Messung verwenden (s. Hb. 6.6.3). Die Zuord-
nung der Befehle zu einem Grenzwert geschieht auch mit den Funktionen:

Aktion Max und **Aktion Min**

Messung starten bei Grenzwert Max:

Messung stoppen bei Grenzwert Min:

Manuelle Abfrage bei Grenzwert Max:

Nullsetzen Timer 0.1s bei Grenzw. Max:

Makro 5..9 ausführen bei Grenzw. Max:

Aktion löschen mit Taste:
12. Programmieren mit Programmier-Menüs

12.4.4 Analog-Anfang und -Ende
Die analoge Ausgabe von Messwerten auf die Analogausgangsmodule (s. Hb. 5) oder die Anzeige als Balken- oder Liniengraphik muss in den meisten Fällen auf einen bestimmten Teilbereich skaliert werden. Dazu legen Sie lediglich den Anfangs- und den Endwert des von Ihnen benötigten Darstellungsbereichs fest. Dieser Bereich wird dann auf den Analogbereich 2V, 10V, 20mA oder beim Display 100 Punkte abgebildet.

Analogausgangsanfang programmieren: 6 Analog-Anfang: 0.0°C

Analogausgangsende programmieren: 6 Analog-Ende: 100.0°C

Diese beiden Parameter Analogausgang-Anfang und Analogausgang-Ende werden auch im Fühler-EEPROM gespeichert und sind deshalb für jeden Kanal individuell programmierbar, d.h. beim manuellen Durchschalten der Kanäle ist für jede Messgröße eine eigene Skalierung möglich.

Das Flag für die Umschaltung von 0-20mA auf 4-20mA wird über die Elementsflags programmiert (s. 12.4.8).

Zur Programmierung aller Parameter eines Analogausgangs gibt es das Assistant-Menü **Analogausgang** (s. 12.6.3).

12.4.5 Ausgabefunktion
Wenn der eigentliche Messwert der Messstelle Mxx nicht benötigt wird, sondern nur der Max-, Min- Mittel- oder Alarmwert, dann kann diese Funktion als Ausgabefunktion programmiert werden (s. Hb. 6.10.4). Speicherung, Analog- und Digitalausgabe berücksichtigen dann nur den entsprechenden Funktionswert. Zur Kontrolle der geänderten Ausgabefunktion erscheint beim Messwert das unten aufgeführte Symbol (s. 10.2).

Beispiele:
2. Der analoge Messwert des Betauungssensors FH A946-1 hat keine Aussagekraft. Man legt den Grenzwert-Max auf ca. 0.5 V, programmiert die Messfunktion Alarmwert und erhält dann nur noch die Werte 0.0% für trocken und 100.0% für betaut.

<table>
<thead>
<tr>
<th>Ausgabefunktion</th>
<th>Kontrollsymbol</th>
<th>Menü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messwert (Mxx)</td>
<td></td>
<td>Ausgabefunktion: Mess</td>
</tr>
<tr>
<td>Differenz (Mxx-M00)</td>
<td>D</td>
<td>Ausgabefunktion: Diff</td>
</tr>
<tr>
<td>Maxwert (Mxx)</td>
<td>H</td>
<td>Ausgabefunktion: Max</td>
</tr>
<tr>
<td>Minwert (Mxx)</td>
<td>L</td>
<td>Ausgabefunktion: Min</td>
</tr>
<tr>
<td>Mittelwert (Mxx)</td>
<td>M</td>
<td>Ausgabefunktion: M(t)</td>
</tr>
<tr>
<td>Alarmwert (Mxx)</td>
<td>A</td>
<td>Ausgabefunktion: Alrm</td>
</tr>
</tbody>
</table>
12.4.6 Bezugskanal 1
Die Rechenfunktionen der Funktionskanäle beziehen sich generell auf einen bestimmten Messkanal (bzw. 2 Messkanäle) (s. 12.3.10, Hb. 6.3.4). Bei der Programmierung eines Funktionskanals wird als Bezugskanal Mb1 automatisch der 1. Kanal des entsprechenden Fühlersteckers Mxx, eingestellt. Der 2. Bezugskanal Mb2 (bei Differenz, Mittelwert M(n) etc.) ist zunächst die Messstelle M00. In Funktion **Bezugskanal 1** können Sie als Bezugskanal auch andere Messstellen einstellen, und zwar entweder absolut eine bestimmte Messstelle oder den Abstand relativ zum Funktionskanal (-01 ist der Kanal vor dem Funktionskanal).

Programmierung des Bezugskanal 1 absolut:
1 Bezugskanal 1: 01
Programmierung des Bezugskanal 1 relativ:
1 Bezugskanal 1: -10

12.4.7 Bezugskanal 2 oder Multiplexer
Bei den Funktionskanälen, die einen 2. Bezugskanal brauchen (s.o.), erscheint in der Zeile nach dem **Bezugskanal 1** automatisch die Funktion **Bezugskanal 2**. In allen anderen Fällen lässt sich mit der Funktion **Multiplexer** durch Ändern des Eingangsmultiplexers die Anschlussbelegung im Stecker ändern (s. Hb. 6.10.2).

Programmierung des Bezugskanal 2 absolut:
1 Bezugskanal 2: 00
Programmierung des Bezugskanal 2 relativ:
1 Bezugskanal 2: -01
Messeingänge B+ und A- massebezogen
1 Multiplexer: B-A
Messeingänge C+ und A- massebezogen
1 Multiplexer: C-A
Messeingänge D+ und A- massebezogen
1 Multiplexer: D-A
Differenzmesseingänge C+ und B-
1 Multiplexer: C-B
Differenzmesseingänge D+ und B-
1 Multiplexer: D-B

12.4.8 Elementflags
Zur Realisierung von fühlerspezifischen Zusatzfunktionen sind bei jedem Messkanal sogenannte Elementflags aktivierbar (s. Hb. 6.10.3)

Messstrom 1/10 für Pt1000, 5000Ω:
Elementflags: I 1/10
(Flag 2:) *
Elementflags: IR
Messbrücke mit Schalter für Endwertsimulation:
Elementflags: Bridge
Digitalkanal nur zyklische Auswertung:
Elementflags: Cyclic
Galv. Trennung ausschalten (s. 8.4):
Elementflags: Iso Off
(Flag 6:) *
Elementflags: Flag 6
Abschaltung Fühlerbrucherkennung:
Elementflags: Br Off
Analogausgang 4-20mA statt 0-20mA:
Elementflags: A 4-20
* Dieses Elementflag hat beim ALMEMO 5690-2M keine Bedeutung
12.5 Gerätekonfiguration

12.5.1 Gerätebezeichnung

In der Funktion **Gerätebezeichnung** (s. Hb. 6.2.4) können Sie einen beliebigen Text mit max. 40 Stellen eingeben (s. 10.5). Der Text erscheint im Hauptmenü, im Druckkopf einer Messung oder in Gerätelisten (Software).

Funktion Gerätebezeichnung:

Beispiel:

Gerätebezeichnung: Ahlborn, Holzkirchen

12.5.2 Geräteadresse und Vernetzung

Alle ALMEMO®-Geräte lassen sich auf sehr einfache Weise vernetzen, um die Messwerte mehrerer evtl. örtlich weit auseinanderliegender Messgeräte zentral zu erfassen (s. Hb. 5.3). Zur Kommunikation mit vernetzten Geräten ist es unbedingt erforderlich, dass jedes Gerät die gleiche Baudrate und seine eigene Adresse hat, da auf jeden Befehl nur ein Gerät antworten darf. Vor jedem Netzwerkbetrieb müssen deshalb alle Messgeräte auf unterschiedliche Gerätenummern eingestellt werden. Bei dieser Anlage wird die Geräteadresse mit den **Kodierschaltern** (6d) auf der Rückseite eingestellt.

In der Funktion **Gerät** des Menüs **GERÄTEKONFIGURATION** wird die eingestellte Geräteadresse, dahinter der Gerätetyp, die Versionsnummer und evtl. eine Optionskennung angezeigt (s. Hb. 6.10.11).

Geräteadresse mit Typ, Version, Option: Gerät: 00 5690-2M V:6.05XY

Beispiel: Adresse: 00, Typ: 5690-2, Version: 6.05, Option: XY

Im Netzwerkbetrieb sollten nur aufeinanderfolgende Nummern zwischen 01 und 99 eingegeben werden, damit das Gerät 00 bei einer Stromunterbrechung nicht ungerechtfertigt adressiert wird.
12.5.3 Baudrate, Datenformat
Die Baudrate ist bei allen Schnittstellenmodulen ab Werk auf 9600 Baud programmiert. Um bei der Vernetzung mehrerer Geräte keine unnötigen Probleme zu bekommen, sollte sie nicht geändert, sondern Rechner oder Drucker entsprechend eingestellt werden. Ist dies nicht möglich, können in der Funktion **Baudrate** die Werte 1200, 2400, 4800, 9600bd oder 57.6, 115.2 kbd eingegeben werden (Max. Baudrate des Schnittstellenmoduls beachten!). Die Baudrateinstellung wird im EEPROM des Schnittstellenmoduls abgelegt und gilt damit auch beim Einsatz mit allen anderen ALMEMO-Geräten.
Funktion **Baudrate**: Baudrate: 9600bd

Datenformat: Unveränderbar 8-Datenbits, keine Parität, 1-Stopbit

12.5.4 Sprache
Die Sprache der Funktionsbeschriftung im Display kann zwischen Deutsch, Englisch und Französisch gewählt werden (optional auch andere Sprachen). Die Softkeys sind international und werden nicht verändert. Ausgaben auf die Schnittstelle erscheinen Englisch, wenn nicht Deutsch eingestellt ist.
Wahl der Sprache in Funktion **Sprache** s. 10.5: Sprache: Deutsch

12.5.5 Beleuchtung und Kontrast
Die Hintergrundbeleuchtung der Anzeige kann in den Auswahlmenüs mit der Taste **ON** oder in der Gerätekonfiguration in Funktion **Beleuchtung** in 3 Stufen ein- bzw. ausgeschaltet werden (Achtung, der Stromverbrauch erhöht sich in Stufe 3 auf über das Doppelte). Ist die Beleuchtung eingeschaltet, aber kein Netzadapter angesteckt, geht die Beleuchtung in einer einstellbaren Beleuchtungszeit nach der letzten Tastenbedienung wieder aus (Pause) und wird bei einem beliebigen Tastendruck wieder eingeschaltet. Mit der Funktion **Kontrast** kann der Kontrast der Anzeige in 10 Stufen eingestellt werden.
Beleuchtung einschalten Stufe 1 bis 3: Beleuchtungsstufe: 2
Beleuchtung ausschalten Stufe 0: Beleuchtungsstufe: 0
Beleuchtungszeit eingeben 20s bis 10 min: Beleuchtungszeit: 20s
Ist die Beleuchtung eingeschaltet, erscheint in der Statuszeile das Symbol: *
Hat sie sich vorübergehend abgeschaltet, leuchtet: Pause
Wiedereinschalten ohne Funktion mit Taste: Kontrast:
Kontrast einstellen (10 bis 100%) s. 10.5: 50%

ALMEMO® 5690-2M 77
12. Programmieren mit Programmier-Menüs

12.5.6 Luftdruck
Der Luftdruck kann zur Kompensation verschiedener Fühler eingegeben werden (s. 11.2.6). Wird er gemessen, erscheint er ebenfalls in dieser Funktion.
Luftdruck eingeben in Funktion Luftdruck: Luftdruck: CP. 1013Mb

12.5.7 Hysterese
Bei Grenzwertüberschreitungen ist die Hysterese eines Alarmzustandes im Bereich von 0 bis 99 Digit (Standard 10 Digit) generell für alle Sensoren in Funktion Hysterese einstellbar (s. 12.3.5 u. Hb. 6.2.7).
Hysterese ändern (0 bis 99) s. 10.5:

12.5.8 Betriebsparameter
Einige Betriebsparameter sind als Softwareoptionen vom Anwender mit der Funktion Konfiguration konfigurierbar (s. Hb. 6.10.13.2).

Netzfrequenzstörunterdrückung 60Hz statt 50Hz
Alle Messwerte löschen beim Start einer Messung
Ringspeicher (Überschreiben alter Werte, wenn voll)
Sofortige Schnittstellenausgabe, Überabtastung
Signalgeber abschalten

Die folgenden Parameter dienen zur Kontrolle der Gerätefunktion:
Von 60 möglichen Kanälen sind 25 aktiviert:
Messkanäle: 60 aktiv:25
Fühlerversorgungsspannung 11.7V = Netzbetrieb:
Vergleichsstellentemperatur = Buchsentemperatur:

12.6 Ausgangsmodule

Diese Ausgangsmodule werden wie die Fühler automatisch erkannt und im Menü Ausgangsmodule dargestellt.

Bei den Relais-Trigger-Modulen vor allem dem Einschub ES5690-RTA5 sind verschiedene Funktionsvarianten konfigurierbar (s. 12.6.2), Relais lassen sich bestimmten
Ausgangsmodule

Grenzwerten zugeordnen (s. 7.5) oder Analogausgänge bestimmten Messkanälen. Im Menü können Sie alle Ports anwählen und entsprechend konfigurieren. Die Anschlussmöglichkeiten sind in der Anleitung des Ausgangsmoduls beschrieben.

12.6.1 Datenkabel

Im Menü erscheint unter der jeweiligen Buchse:

Variante 0: Serielles Standardinterface immer aktiv
Die Baudrate ist auch im Kabelstecker gespeichert:

Ausgangs-Buchse A1:
DK Datenkabel
0: RS232
Baudrate: 9600 Bd

12.6.2 Relais-Trigger-Analog-Module
Während bei V5-Modulen (ZA1000-EAK) zur Ansteuerung von Peripheriegeräten für Relais und Triggereingang (s. Hb. 5.1.2/3) insgesamt nur eine Funktionsvariante zur Verfügung steht (s. Hb. 6.6.4), bieten neue V6 Relais-Trigger-Ausgangsmodule, wie z.B. der Einschub ES5690-RTA5 (s. 9.) bis zu 10 Elemente. Relais, Triggereingänge oder Analogausgänge lassen sich in ihrer Funktionsvariante einzeln konfigurieren. Die externen Module sind sowohl an die Ausgangsbuchse A2 als auch A1 (2) ansteckbar, der Einschub steckt auf dem Bus. Um alle Elemente ansprechen zu können, wurden jeder Buchse 10 Portadressen zugeordnet:

<table>
<thead>
<tr>
<th>Buchse</th>
<th>Anschluss</th>
<th>Portadressen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>V6-Ausgangsmodule an Buchse A1</td>
<td>10..19</td>
</tr>
<tr>
<td>A2</td>
<td>V6-Ausgangsmodule an Buchse A2</td>
<td>20..29</td>
</tr>
<tr>
<td>B3..9</td>
<td>Max. 7 Einschübe ES5690-RTA5 auf dem Bus</td>
<td>30..99</td>
</tr>
</tbody>
</table>

Im Menü lassen sich die einzelnen Elemente der Ausgangsmodule folgendermaßen anwählen und in ihrer Funktionsweise programmieren (s. Hb. 6.10.9):
Zuerst **Port anwählen** mit Tasten:

Port anwählen mit Tasten:

z.B. Port 0 Einschub B3 (Portadresse 30):

Dort erkennt man das entsprechende Element:

Relais:
Relais Typ Schließer (Normally Open):
Relais: Schließer

Relais Typ Öffner (Normally Closed):
Relais: Öffner

Relais Typ Wechsler (Cange Over):
Relais: Wechsler

Die Relaisansteuerung ist auf folgende **Varianten** konfigurierbar s. 10.5:

- 0: Alarm, wenn ein Kanal von allen gestört ist
- 2: Alarm eines programmierbaren Kanals
- 3: Alarm, wenn ein Gw.max von allen gestört ist
- 4: Alarm, wenn ein Gw.min von allen gestört ist
- 8: Relais über Schnittstelle oder Tasten gesteuert

Zur Erkennung von Stromausfall

ist es vorteilhaft, wenn die Relaisansteuerung invertiert wird, weil ohne Strom automatisch auch der Alarmfall eintritt. Deshalb sind die Funktionsvarianten auch invers vorhanden.

Inverse Relaisansteuerung:

z.B. Variante 2 invertiert:

-2: int. zugeordnet invers

Die Aktivierung und der tatsächliche Kontaktzustand, der sich aus Ansteuerung und Relaistyp ergibt, wird in der nächsten Zeile angezeigt.

Aktivierung und Zustand des Relaiskontaktes:

Zustand: aktiv offen

Eine manuelle Aktivierung der Relais über die Tastatur oder über die Schnittstelle ermöglicht die Relais-Variante 8 ‘ext. gesteuert’ (s. Hb. 6.10.10).

Relais Variante 8:

Manuelle Aktivierung der Relais mit:

8: ext. gesteuert

<ON> oder **<OFF>**

In der letzten Zeile des Menüs sieht man die Funktion **Watchdog**:

Die Watchdogfunktion sorgt dafür, dass alle Relais abfallen, wenn die Ansteuerung vom Messgerät oder die Ansteuerung von gesteuerten Relais über die Schnittstelle für 1 Min. ausfällt. Im Alarmzustand wird bei den **Ausgangsmodulen** hinter der Funktion **Watchdog** das Symbol ‘Error’ angezeigt.

Einschalten der Watchdogfunktion mit Taste: **<ON>**

Ausschalten der Watchdogfunktion mit Taste: **<OFF>**

Triggereingänge

Zur Steuerung des Messablaufes sind bei allen V6-Ausgangsmodulen auf den Ports 8 und 9 2 Triggereingänge verfügbar.
Speziell beim RTA3 können Sie über die Modultastatur die Triggerquelle ‘Taste’ und/oder ‘Optokoppler’ mit den Tasten PROG, ▲ / ▼ ... und PROG bestimmen oder mit ‘aus’ die Triggerfunktion zur Sicherheit ganz ausschalten.

Folgende Triggerfunktionen
sind als Funktionsvarianten programierbar:

0: Start und Stop einer Messung
1: einmalige Abfrage
2: Max-Min-Werte löschen
3: Drucken
4: Start-Stop Pegelgesteuert
8: Messwert nullsetzen
-5: Makro5
-6: Makro6
-7: Makro7
-8: Makro8
-9: Makro9

12.6.3 Analogausgang

Zur analogen Registrierung von Messwerten können Sie an die Buchsen A1 und/oder A2 (2) noch V5-Ausgangsmodule mit einem Analogausgang z.B. Registrierkabel ZA1601-RK -1.2..2.0V (s. Hb. 5.1.1) anstecken und im Menü **AUSGANGSMODULE** konfigurieren.

Bei dem neuen V6-Relais-Trigger-Analog-Einschub ZA8006-RTA5 sind optional bis zu 10 zusätzliche separat konfigurierbare Analogausgänge auf den Ports verfügbar (s. 9.), wahlweise mit folgenden Ausgangssignalen:

- Spannung 0..10V 0.5mV/Digit
- Strom 0..20mA 1µA/Digit

Die **Programmierung** erfolgt wie bei Relais und Triggereingängen:

Buchse und Port anwählen mit den Tasten: <P>: ▲ oder ▼

Folgende Ausgabemodi sind als Varianten programierbar:

0: Messwert des angewählten Messkanals:
2: Messwert eines programmierten Kanals:
8: Programmierte Analogausgabe (s.u.):

Darunter erscheint der **Analogwert** mit Dim.:
12. Programmieren mit Programmier-Menüs

Der **Messwert des angewählten Messkanals** Mxx wird in der Variante 0 ausgegeben. Für diesen Modus ist die **halbkontinuierliche** Messrate (s. 12.1.3) am günstigsten, weil der Analogausgang so am häufigsten bedient wird.

Analogausgang einer Messstelle zuordnen
In Variante 2 ´intern zugeordnet´ ist nach Anwahl der Funktion Mxx die Messstelle programmierbar, die ausgegeben werden soll:

| 2: int. zugeordnet | M 02 |

In diesem Fall ist die **kontinuierliche** Messrate (s. 12.1.3) besser.

Skalierung der Analogausgabe
Bei der Konfiguration einer Messwerteausgabe kann noch im gleichen Menü der tatsächlich genutzte Messbereich der entsprechenden Messstelle mit den Funktionen **Analog-Anfang** und **-Ende** auf die vollen 10V oder 20mA gespreizt werden (s. 12.4.4)

Analogausgangsanfang programmieren: 6 Analog-Anfang: 0.0°C

Analogausgangsende programmieren s. 10.5: 6 Analog-Ende: 100.0°C

Nur bei 20mA Analogausgängen:
Wahl zwischen 0-20mA und 4-20mA Ausgabe: Stromausgang: 4-20 mA

Programmierte Analogwertausgabe (s. Hb. 6.10.7)
In Variante 8 ´ext. gesteuert´ kann der Analogausgabewert programmiert werden (s. 10.5):

| 8: ext. gesteuert | Analogwert: 5.000 mA |

12.7 Menü Stromversorgung

Anzeige der Versorgungs-/Batteriespannung:
Anzeige der tatsächlichen Fühlerspannung:

| Batteriespannung: 10.8 V |
| Fühlerspannung: 11.6 V |

ESC
12.8 Menü Verriegelung, Kalibrierung (Option KL)

Im Menü **Verriegelung-Kalibrierung** können Sie den Zugang zu bestimmten Menüs und zu bestimmte Funktionen verriegeln. Außerdem sehen Sie dort Seriennummern und Kalibrierdaten vom Gerät und den Fühlern (soweit vorhanden). Ist die Option KL eingebaut, dann ist es nicht nur möglich, Fühler in mehreren Punkten im Stecker zu korrigieren (s. 12.3.11), sondern die entsprechenden Kalibrierdaten auch zu verwalten.

Die Zugangsberechtigung zu diesem und anderen Menüs, sowie zu Tastenfunktionen können durch die Parameter ‘Menu‘ und ‘Fct‘ detailliert festgelegt und durch ein Passwort gesichert werden.

Geräteverriegelung:

Kein Passwort, Verriegelung mit neuem Passwort:

Mit Passwort verriegelt, richtiges Passw. eingeben:

Verriegelungsstufe Menü und Funktion wählen:

Menü Verriegelung Menüs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>keine</td>
</tr>
<tr>
<td>1</td>
<td>Kalibriermenü, außer Passwort</td>
</tr>
<tr>
<td>2</td>
<td>+ Programmiermenüs, außer Speicheraufnahme und -ausgabe</td>
</tr>
<tr>
<td>3</td>
<td>+ Speicheraufnahme und -ausgabe</td>
</tr>
<tr>
<td>4</td>
<td>+ Assistentmenüs</td>
</tr>
<tr>
<td>5</td>
<td>+ Messmenüs, außer Usermenü U1</td>
</tr>
</tbody>
</table>

Fct Verriegelung Funktionen

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>keine</td>
</tr>
<tr>
<td>1</td>
<td>Dateneingabe, ein- und ausschalten</td>
</tr>
<tr>
<td>2</td>
<td>+ Meßdaten löschen</td>
</tr>
<tr>
<td>3</td>
<td>+ Messung starten, stoppen, ausgeben</td>
</tr>
<tr>
<td>4</td>
<td>+ Funktionsanwahl, Meßstellenanwahl</td>
</tr>
</tbody>
</table>

Kalibrierdatenverwaltung:

Gerätetyp mit Version und Seriennummer, sowie Fühler mit Bestellnummer und Seriennummer werden nur angezeigt. Mit Option KL können Sie hier jedoch das Datum zur nächsten Kalibrierung und das Kalibrierintervall in Monaten eintragen. Wenn die ‘Meldung Kalibrierung’ aktiviert ist und die nächste Kalibrierung durchgeführt werden muss, erscheint beim Einschalten des Gerätes eine entsprechende Meldung, wenn eine neue Kalibrierung fällig ist.
13. FEHlersuche

Fehler: Keine oder gestörte Anzeige, keine Tastenreaktion
Abhilfe: Stromversorgung prüfen, Akku laden, aus- und wieder einschalten, evtl. neu initialisieren (siehe Punkt 7.5)

Fehler: Falsche Messwerte
Abhilfe: Komplette Programmierung des Kanals genau prüfen, bes. Basis u. Nullpunkt (Menü Fühlerprogrammierung und Sonderfunktionen)

Fehler: Schwankende Messwerte oder Aufhängen im Betrieb,
Abhilfe: Verkabelung auf unzulässige galv. Verbindung testen, alle verdächtigen Fühler abstecken, Handfühler in Luft oder Phantome (Kurzschluss AB bei Thermoelementen, 100Ω bei Pt100-Fühlern) anstecken und prüfen, danach Fühler wieder sukzessive anstecken und prüfen, tritt bei einem Anschluss ein Fehler auf, Verdrahtung prüfen, evtl. Fühler isolieren, Störinflüsse durch Schirmung oder Verdrillen be seitigen.

Fehler: Datenübertragung über die Schnittstelle funktioniert nicht
Abhilfe: Schnittstellenmodul, Anschlüsse und Einstellung prüfen: Sind beide Geräte auf gleiche Baudrate und Übertragungsmodus eingestellt (s. 12.5.3)? Wird beim Rechner die richtige COM-Schnittstelle angesprochen? Ist ein Drucker im ON-LINE Zustand? Sind die Handshakeleitungen DTR und DSR aktiv?
Zur Überprüfung des Datenflusses und der Handshakeleitungen ist ein kleiner Schnittstellentester mit Leuchtdioden sehr nützlich (Im Bereitschaftszustand liegen die Datenleitungen TXD, RXD auf negativem Potential von ca. -9V und die LED´s leuchten grün, die Handshakeleitungen DSR, DTR, RTS, CTS haben dagegen mit ca. +9V eine positive Spannung und leuchten rot. Während der Datenübertragung müssen die Daten-LED´s rot aufblitzen).
Test der Datenübertragung mit einem Terminal (AMR-Control, WINControl, WINDOWS-Terminal):
Ausgabekanal Schnittstelle U anwählen mit Befehl `A1`, Gerät mit seiner Gerätenummer `Gxy` adressieren (s. Hb. 6.2.1),
<Strg Q> für XON eingeben, falls Rechner im XOFF-Zustand, Programmierung abfragen mit ‘P15’ (s. Hb. 6.2.3),
Nur Sendeleitung testen durch Zykluseingabe mit Befehl ‘Z123456’
und Kontrolle in der Anzeige
Empfangsleitung testen mit Taste <PRINT> und Bildschirmkontrolle.

Fehler: Datenübertragung im Netzwerk funktioniert nicht

Abhilfe:
Prüfen, ob alle Geräte auf unterschiedliche Adressen eingestellt sind,
alle Geräte über Terminal und Befehl ‘Gxy’ einzeln adressieren.
Adressiertes Gerät ok, wenn als Echo wenigstens ‘y CR LF’ kommt.
Ist weiterhin keine Übertragung möglich, vernetze Geräte abstecken,
alle Geräte einzeln am Datenkabel des Rechners prüfen (s.o.),
Verdrahtung auf Kurzschluß oder Kabeldreher hin prüfen,
sind alle Netzverteiler mit Strom versorgt?
Geräte sukzessive wieder vernetzen und prüfen (s.o.)

14. KONFORMITÄTSERKLÄRUNG

Zur Beurteilung des Erzeugnisses wurden folgende Normen herangezogen:

<table>
<thead>
<tr>
<th>Sicherheit:</th>
<th>EN 61010-1:2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC:</td>
<td>EN 61326: 2006</td>
</tr>
</tbody>
</table>

Bei einer nicht mit uns abgestimmten Änderung des Produkts verliert diese Erklärung Ihre Gültigkeit.
Bei der Verlängerung der Fühler ist darauf zu achten, dass die Messleitungen nicht zusammen mit Starkstromleitungen verlegt oder fachgerecht geschirmt werden, um eine Einkopplung von Störsignalen zu vermeiden.

ALMEMO® 5690-2M 85
15. Anhang

15. ANHANG

15.1 Technische Daten (s.a. Hb. 2.3)

Messeingänge:
Mastermesskreiskarte MM-A9: 9 ALMEMO®-Buchsen für ALMEMO®-Flachstecker
Messkanäle: 9 Primärkanäle galv. getrennt, max. 31 Zusatzkanäle für Doppelfühler und Funktionskanäle
AD-Wandler: Delta-Sigma 24bit, 2.5, 10, 50, 100 M/s, Verst. 1..100
Fühlerspannungsversorgung: Insgesamt Netz: 12V 400mA, Akku: 9..11.5 200mA

Umschalterkarte U-A10:
10 ALMEMO®-Buchsen für ALMEMO®-Flachstecker
10 Kanäle galv. getr., 30 Zusatzkanäle, mit Fühlerversorgung, 2 Steckplätze

Umschalterkarte U-MU:
10 Eingänge galv. getr. über 10fach-MU-Stecker ohne Fühlerversorg., 30 Zusatzkanäle, 1 Steckplatz

Umschalterkarte U-TH:
10 Eingänge galv. getr. über Miniatur-Thermostecker ohne Fühlerversorg., 30 Zusatzkanäle, 1/2 Steckplätze bei Aneinanderreihung Blindplatte 4TE erforderlich

Umschalterkarte U-KS:
10 Eingänge galv. getr. über 2 Klemmstecker ohne Fühlerversorg., 30 Zusatzkanäle, 1 Steckplatz

Option KSU:
10 Eingänge A-C mit Teiler 100/1 Genauigkeit 0.1% (22°C), Drift 0.003%/K

Option KSI:
10 Eingänge A-B mit Shunt 2 Ohm Genauigkeit 0.1% (22°C), Drift 0.005%/K

Ausgänge:
2 ALMEMO®-Buchsen für alle Ausgangsmodule, Alarmsignalgeber intern

Ausstattung:
Display: Graphik 128x128 Punkte, 16 Zeilen à 4mm
Bedienung: 9 Tasten (4 Softkeys und Cursorblock))
Speicher: Speichercard, Laufwerk und USB-Kartenleser
Option S: 512kB EEPROM (64.000..100.000 Messwerte), nicht mit 100 M/s verwendbar!
Uhrzeit und Datum: Echtzeituhr gepuffert mit Lithiumbatterie
Mikroprozessor: M16C62P

Spannungsversorgung: ext. 10...13V DC
Netzadapter: ZB 1212-NA9 230V AC auf 12V DC, 2.5A
Akku in Einschub AP: 8 NiMH-Mignonzellen 9..11V, 1600mAh
Stromverbrauch Aktivmodus: ca. 37 mA (ohne Ein-Ausgangsmodule)
Beleuchtung 1: ca. 46 mA
Beleuchtung 2: ca. 60 mA
Beleuchtung 3: ca. 75 mA
Sleepmodus: ca. 50 uA
Umschalterkarten: ca. 5 mA

Gehäuse:
19" Tischgehäuse 32 TE: B179 x H158 x T232 mm Polystyrol geschirmt
19" Tischgehäuse 84 TE: B444 x H158 x T232 mm Polystyrol geschirmt
19" Baugruppenträger 84 TE: B483 x H132 x T273 mm
Einsatzbedingungen:
- Arbeitstemperatur: -10 ... +50 °C (Lagertemperatur: -20 ... +60 °C)
- Umgebungsluftfeuchte: 10 ... 90 % rH (nicht kondensierend)

Produktübersicht

Messwerterfassungsanlage ALMEMO® 5690-2M
- 9 Eingänge, max. 40 Kanäle, 2 Ausgänge, kaskadierbare Schnittstelle,
- 9 Tasten, LCD-Graphik-Display, Echtzeituhr, Speichercard,
- USB-Kartenleser, Netzteil 12V/2.5A
 - im 19“ Tischgehäuse 32 TE, 6 Steckplätze: MA 56902M09TG3
 - im 19“ Tischgehäuse 84 TE, 19 Steckplätze: MA 56902M09TG8
 - im 19“ Baugruppenträger 84 TE, 19 Steckplätze: MA 56902M09BT8

Optionen:
- **S**: 512kB EEPROM-Speicher eingebaut
- **Q4**: Messrate 400M/s für eine Messstelle
- **R**: Messbereiche zur Temperaturanzeige von 8 Kältemitteln
- **KL**: Linearisierung, Mehrpunktkalibration, Kalibrierdatenverwaltung

Akku-Einschub (8 Zellen NiMH, 1600mAh), 1 Steckplatz

- **OA 5690-S**
- **SA 0000-Q4**
- **SB 0000-R**
- **OA 5690-KL**

10fach-MU-Stecker für 10 Fühler, 10-40 Kanäle

- **ZA 5690-AP**
- **ES 5690-UA10**
- **ES 5690-UMU**
- **ES 5690-UTH**
- **ES 5690-UKS**
- **ES 5690-UKSU**
- **ES 5690-UKSI**

Trigger-Ausgabe-Interface mit 2 Triggereingängen, 4 Halbleiterrelais

- **ES 5690-RTA5**
- **OA 8006-R02**

Zubehör:
- Micro-SD-Card mit Adapter min. 128MB
- Gleichspannungskabel 10..30V DC, 12V/0.25A galv. getrennt
- Gleichspannungskabel 10..30V DC, 12V/1.25A galv. getrennt
- ALMEMO®-Datenkabel mit USB-Interface, galv. getrennt, max. 921.6kB
- ALMEMO®-Datenkabel mit V24-Interface, galv. getrennt, max. 115.2kB
- ALMEMO®-Netzwerkkabel, galv. getrennt, max. 115.2kB
- ALMEMO®-Datenkabel mit Ethernet-Interface, galv. getrennt, max. 115.2kB
- ALMEMO®-Ein-Ausgangskabel V6 für Triggerung und Grenzwertalarm
- ALMEMO®-Registrierkabel nicht galv. getrennt -1.25 bis 2.00 V
15.2 Stichwortverzeichnis

<table>
<thead>
<tr>
<th>Stichwort</th>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abfragemodus</td>
<td>12.2.5</td>
<td>60</td>
</tr>
<tr>
<td>Ablaufsteuerung</td>
<td>5.1.3</td>
<td>16</td>
</tr>
<tr>
<td>Akku-Einschub</td>
<td>15.1</td>
<td>13, 87</td>
</tr>
<tr>
<td>Akkubetrieb</td>
<td>7.3</td>
<td>19</td>
</tr>
<tr>
<td>Akkus</td>
<td>4.2</td>
<td>12</td>
</tr>
<tr>
<td>Aktion Max und Aktion Min</td>
<td>12.4.3</td>
<td>73</td>
</tr>
<tr>
<td>Aktivierung</td>
<td>12.6.2</td>
<td>80</td>
</tr>
<tr>
<td>Alarmrelaiskabel</td>
<td>12.4.3</td>
<td>73</td>
</tr>
<tr>
<td>AMR-Control</td>
<td>5.1.3</td>
<td>17</td>
</tr>
<tr>
<td>Analog-Anfang und -Ende</td>
<td>12.4.4</td>
<td>74</td>
</tr>
<tr>
<td>Analogausgang</td>
<td>12.6.3</td>
<td>81</td>
</tr>
<tr>
<td>Analogausgänge</td>
<td>9.3</td>
<td>26f.</td>
</tr>
<tr>
<td>Anfangszeit</td>
<td>12.1.4</td>
<td>57</td>
</tr>
<tr>
<td>Anschluss der Messwertgeber</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Anschluss der Peripherie</td>
<td>9.2.4</td>
<td>27</td>
</tr>
<tr>
<td>Anschlussbuchse DC</td>
<td>7.1</td>
<td>3, 19</td>
</tr>
<tr>
<td>Ansprechpartner</td>
<td>15.3</td>
<td>94</td>
</tr>
<tr>
<td>Anwahl einer Messstelle</td>
<td>11.1.1</td>
<td>32</td>
</tr>
<tr>
<td>Anwendermenüs</td>
<td>11.7</td>
<td>51</td>
</tr>
<tr>
<td>Anzeige</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>ARRAY</td>
<td>11.4.4</td>
<td>43</td>
</tr>
<tr>
<td>Assistent-Menü</td>
<td>11.6</td>
<td>28, 41, 50</td>
</tr>
<tr>
<td>Ausgabeformat</td>
<td>12.1.2</td>
<td>38, 55</td>
</tr>
<tr>
<td>Ausgabefunktion</td>
<td>12.4.5</td>
<td>74</td>
</tr>
<tr>
<td>Ausgangsbuchsen</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Ausgangsmodule</td>
<td>12.6</td>
<td>78</td>
</tr>
<tr>
<td>Ausgangsrelais</td>
<td>9.2.1</td>
<td>26</td>
</tr>
<tr>
<td>Ausschalten</td>
<td>10.1</td>
<td>28</td>
</tr>
<tr>
<td>Ausstattung</td>
<td>15.1</td>
<td>86</td>
</tr>
<tr>
<td>Balkengrafik</td>
<td>11.5.1</td>
<td>49</td>
</tr>
<tr>
<td>Basiswert</td>
<td>12.3.6</td>
<td>66</td>
</tr>
<tr>
<td>Baudrate</td>
<td>12.5.3</td>
<td>77</td>
</tr>
<tr>
<td>Belastbarkeit</td>
<td>9.3</td>
<td>27</td>
</tr>
<tr>
<td>Beleuchtung</td>
<td>12.5.5</td>
<td>28, 77</td>
</tr>
<tr>
<td>Beratungsingenieure</td>
<td>15.3</td>
<td>94</td>
</tr>
<tr>
<td>Betauung</td>
<td>4.1</td>
<td>12</td>
</tr>
<tr>
<td>Betriebsparameter</td>
<td>12.5.8</td>
<td>78</td>
</tr>
<tr>
<td>Bezugskanal 1</td>
<td>12.4.6</td>
<td>75</td>
</tr>
<tr>
<td>Bezugskanal 2</td>
<td>12.4.7</td>
<td>75</td>
</tr>
<tr>
<td>Dämpfungsgrad</td>
<td>11.4.1</td>
<td>42</td>
</tr>
<tr>
<td>Darstellung von mehreren Messstellen</td>
<td>11.5</td>
<td>49</td>
</tr>
<tr>
<td>Dateiname</td>
<td>12.2.2</td>
<td>58f.</td>
</tr>
<tr>
<td>Dateneingabe</td>
<td>10.5</td>
<td>30</td>
</tr>
<tr>
<td>Datenformat</td>
<td>12.5.3</td>
<td>77</td>
</tr>
<tr>
<td>Datenkabel</td>
<td>12.6.1</td>
<td>79</td>
</tr>
<tr>
<td>Stichwort</td>
<td>Seite</td>
<td>Zeile</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Datenpufferung</td>
<td>7.6</td>
<td>20</td>
</tr>
<tr>
<td>Datum</td>
<td>12.1.1</td>
<td>55</td>
</tr>
<tr>
<td>Dezimalpunkteinstellung</td>
<td>12.3.6</td>
<td>65</td>
</tr>
<tr>
<td>Differenzkanal</td>
<td>8.2</td>
<td>21</td>
</tr>
<tr>
<td>Differenzmessung</td>
<td>11.5.2</td>
<td>49</td>
</tr>
<tr>
<td>Dimensionsänderung</td>
<td>12.3.8</td>
<td>66</td>
</tr>
<tr>
<td>Druckzyklusfaktor</td>
<td>12.4.1</td>
<td>72</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>11.4.9</td>
<td>48</td>
</tr>
<tr>
<td>Ein-, Ausschalten</td>
<td>7.5</td>
<td>20</td>
</tr>
<tr>
<td>Einführung</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>Eingabekanal anwählen</td>
<td>12.3.1</td>
<td>63</td>
</tr>
<tr>
<td>Einmalige Ausgabe</td>
<td>11.3.1</td>
<td>38</td>
</tr>
<tr>
<td>Einsatzbedingungen</td>
<td>15.1</td>
<td>87</td>
</tr>
<tr>
<td>Einschub AP</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Einschub MM-A9</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Einschub RTA5</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Einschub U-A10</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Einschub U-KS</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Einschub U-MU</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>Einschub U-TH</td>
<td>1.2</td>
<td>4</td>
</tr>
<tr>
<td>elektromagnetische Verträglichkeit</td>
<td>14</td>
<td>85</td>
</tr>
<tr>
<td>Elementflags</td>
<td>12.4.8</td>
<td>75</td>
</tr>
<tr>
<td>Endezeit</td>
<td>12.1.4</td>
<td>57</td>
</tr>
<tr>
<td>Entsorgung</td>
<td>3.3</td>
<td>10</td>
</tr>
<tr>
<td>Erdungsbuchse</td>
<td>1.2</td>
<td>3</td>
</tr>
<tr>
<td>Erweiterung der Messstellen</td>
<td>8.3</td>
<td>22</td>
</tr>
<tr>
<td>Exponent</td>
<td>12.3.6</td>
<td>66</td>
</tr>
<tr>
<td>Externe Gleichspannungsversorgung</td>
<td>7.2</td>
<td>19</td>
</tr>
<tr>
<td>Fail-Save-Mode</td>
<td>12.2.5</td>
<td>61</td>
</tr>
<tr>
<td>Faktor</td>
<td>12.3.6</td>
<td>66</td>
</tr>
<tr>
<td>Fehlersuche</td>
<td>13</td>
<td>84</td>
</tr>
<tr>
<td>Fühlerabgleich</td>
<td>11.2.3</td>
<td>34</td>
</tr>
<tr>
<td>Fühlerbruch</td>
<td>10.2</td>
<td>29</td>
</tr>
<tr>
<td>Fühlerprogrammierung</td>
<td>12.3</td>
<td>14, 63</td>
</tr>
<tr>
<td>Fühlerspannung</td>
<td>12.5.8</td>
<td>78</td>
</tr>
<tr>
<td>Fühlerversorgung</td>
<td>12.4.2</td>
<td>20, 72</td>
</tr>
<tr>
<td>Funktionen des ALMEMO 5690-2M</td>
<td>5.1</td>
<td>13</td>
</tr>
<tr>
<td>Funktionsanwahl</td>
<td>10.4</td>
<td>30</td>
</tr>
<tr>
<td>Funktionsausdrucke</td>
<td>11.7.3</td>
<td>53</td>
</tr>
<tr>
<td>Funktionskanäle</td>
<td>12.3.10</td>
<td>70</td>
</tr>
<tr>
<td>Funktionstasten</td>
<td>10.3</td>
<td>29</td>
</tr>
<tr>
<td>galv. Trennung</td>
<td>8.4</td>
<td>24</td>
</tr>
<tr>
<td>Garantie</td>
<td>3.1</td>
<td>9</td>
</tr>
<tr>
<td>Gehäuse</td>
<td>15.1</td>
<td>27, 86</td>
</tr>
<tr>
<td>Genauigkeit</td>
<td>9.3</td>
<td>27</td>
</tr>
<tr>
<td>Geräteadresse</td>
<td>12.5.2</td>
<td>76</td>
</tr>
<tr>
<td>Gerätebezeichnung</td>
<td>12.5.1</td>
<td>76</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>Geräteinterne Kanäle</td>
<td>8.2</td>
<td>21</td>
</tr>
<tr>
<td>Gerätekonfiguration</td>
<td>12.5</td>
<td>76</td>
</tr>
<tr>
<td>gleitende Mittelwertbildung</td>
<td>11.4.1</td>
<td>42</td>
</tr>
<tr>
<td>Grenzwertaktionen</td>
<td>12.4.3</td>
<td>73</td>
</tr>
<tr>
<td>Grenzwerte</td>
<td>12.3.5</td>
<td>65</td>
</tr>
<tr>
<td>Halbkontinuierliche Messstellenabfrage</td>
<td>12.1.3</td>
<td>56</td>
</tr>
<tr>
<td>Hotline</td>
<td>15.3</td>
<td>94</td>
</tr>
<tr>
<td>Hysterese</td>
<td>12.5.7</td>
<td>65, 78</td>
</tr>
<tr>
<td>Inbetriebnahme</td>
<td>9.2.5</td>
<td>18, 27</td>
</tr>
<tr>
<td>Inverse Relaisansteuerung</td>
<td>12.6.2</td>
<td>80</td>
</tr>
<tr>
<td>Invertierung</td>
<td>9.2.1</td>
<td>26</td>
</tr>
<tr>
<td>Kalibrierdatenverwaltung</td>
<td>12.8</td>
<td>71, 83</td>
</tr>
<tr>
<td>Kältemittel</td>
<td>12.3.9</td>
<td>69</td>
</tr>
<tr>
<td>Klemmstecker</td>
<td>9.2.5</td>
<td>27</td>
</tr>
<tr>
<td>Kodierschalter</td>
<td>8.3</td>
<td>3f., 22</td>
</tr>
<tr>
<td>Kommentar</td>
<td>12.3.2</td>
<td>64</td>
</tr>
<tr>
<td>Kompensation</td>
<td>11.2</td>
<td>33</td>
</tr>
<tr>
<td>Konfiguration</td>
<td>12.5.8</td>
<td>78</td>
</tr>
<tr>
<td>Konfiguration der Menüs</td>
<td>11.7.2</td>
<td>53</td>
</tr>
<tr>
<td>Konformitätserklärung</td>
<td>14</td>
<td>85</td>
</tr>
<tr>
<td>Kontaktzustand</td>
<td>12.6.2</td>
<td>80</td>
</tr>
<tr>
<td>Kontinuierliche Messstellenabfrage</td>
<td>12.1.3</td>
<td>57</td>
</tr>
<tr>
<td>Kontrast</td>
<td>12.5.5</td>
<td>77</td>
</tr>
<tr>
<td>Kontrollampen</td>
<td>1.1</td>
<td>2f.</td>
</tr>
<tr>
<td>Kontrollsymbole</td>
<td>10.2</td>
<td>29</td>
</tr>
<tr>
<td>Korrekturwerte</td>
<td>12.3.7</td>
<td>66</td>
</tr>
<tr>
<td>Kraftaufnehmer</td>
<td>11.2.4</td>
<td>35</td>
</tr>
<tr>
<td>Kundendienst</td>
<td>15.3</td>
<td>94</td>
</tr>
<tr>
<td>Leitfähigkeit</td>
<td>11.2.3</td>
<td>34</td>
</tr>
<tr>
<td>Lieferumfang</td>
<td>3.2</td>
<td>10</td>
</tr>
<tr>
<td>Linearisierung</td>
<td>12.3.11</td>
<td>71</td>
</tr>
<tr>
<td>Liniengrafik</td>
<td>11.3.5</td>
<td>40</td>
</tr>
<tr>
<td>Luftdruck</td>
<td>12.5.6</td>
<td>78</td>
</tr>
<tr>
<td>Luftdruckkompensation</td>
<td>12.3.9</td>
<td>36, 69</td>
</tr>
<tr>
<td>Makro</td>
<td>12.6.2</td>
<td>81</td>
</tr>
<tr>
<td>manuelle Messstellenabfrage</td>
<td>11.3.1</td>
<td>38</td>
</tr>
<tr>
<td>Maxzeit</td>
<td>11.1.2</td>
<td>32</td>
</tr>
<tr>
<td>Mehrkanalanzeige</td>
<td>11.5.1</td>
<td>49</td>
</tr>
<tr>
<td>Mehrpunktkalibration</td>
<td>12.3.11</td>
<td>71</td>
</tr>
<tr>
<td>Menü Mehrkanalanzeige</td>
<td>11.5.1</td>
<td>49</td>
</tr>
<tr>
<td>Menü Messstellenliste</td>
<td>11.5.3</td>
<td>50</td>
</tr>
<tr>
<td>Menü Stromversorgung</td>
<td>12.7</td>
<td>82</td>
</tr>
<tr>
<td>Menüfunktionen ausgeben</td>
<td>11.3.4</td>
<td>39</td>
</tr>
<tr>
<td>Menüwahl</td>
<td>10.1</td>
<td>28</td>
</tr>
<tr>
<td>Mess-Menüs</td>
<td>11</td>
<td>28, 31</td>
</tr>
<tr>
<td>Stichwortverzeichnis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Messbereichswahl</td>
<td>12.3.9</td>
<td>67</td>
</tr>
<tr>
<td>Messdatenaufnahme</td>
<td>12.2.2</td>
<td>59</td>
</tr>
<tr>
<td>Messdauer</td>
<td>12.2.2</td>
<td>45, 57, 59</td>
</tr>
<tr>
<td>Messeingänge</td>
<td>15.1</td>
<td>3f., 21, 86</td>
</tr>
<tr>
<td>Messen</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>Messen mit einer Messstelle</td>
<td>11.1</td>
<td>32</td>
</tr>
<tr>
<td>Messkanäle</td>
<td>12.5.8</td>
<td>78</td>
</tr>
<tr>
<td>Messrate</td>
<td>12.1.3</td>
<td>56</td>
</tr>
<tr>
<td>Messstellenabfragen</td>
<td>11.3</td>
<td>37</td>
</tr>
<tr>
<td>Messstellenbezeichnung</td>
<td>12.3.2</td>
<td>64</td>
</tr>
<tr>
<td>Messstellenliste</td>
<td>11.5.3</td>
<td>31, 50</td>
</tr>
<tr>
<td>Messstellenumschalterkarte U-A10</td>
<td>8.3</td>
<td>22</td>
</tr>
<tr>
<td>Messstellenumschalterkarte U-KS</td>
<td>8.3</td>
<td>23</td>
</tr>
<tr>
<td>Messstellenumschalterkarte U-MU</td>
<td>8.3</td>
<td>22</td>
</tr>
<tr>
<td>Messstellenumschalterkarte U-TH</td>
<td>8.3</td>
<td>23</td>
</tr>
<tr>
<td>Messung</td>
<td>5.1.2</td>
<td>15</td>
</tr>
<tr>
<td>Messwert nullsetzen</td>
<td>11.2.1</td>
<td>33</td>
</tr>
<tr>
<td>Messwertdämpfung</td>
<td>11.4.1</td>
<td>42</td>
</tr>
<tr>
<td>Messwertgeber</td>
<td>8.1</td>
<td>21</td>
</tr>
<tr>
<td>Messwertkorrektur</td>
<td>11.2</td>
<td>33</td>
</tr>
<tr>
<td>Messwertspeicher</td>
<td>12.2</td>
<td>58</td>
</tr>
<tr>
<td>Messzeit</td>
<td>11.4.6</td>
<td>45</td>
</tr>
<tr>
<td>Minimale Fühlerversorgungsspannung</td>
<td>12.4.2</td>
<td>72</td>
</tr>
<tr>
<td>Minzeit</td>
<td>11.1.2</td>
<td>32</td>
</tr>
<tr>
<td>Mischungsverhältnis</td>
<td>11.2.6</td>
<td>36</td>
</tr>
<tr>
<td>Mittelmodus</td>
<td>12.3.3</td>
<td>42, 64</td>
</tr>
<tr>
<td>Mittelwertbildung</td>
<td>11.4</td>
<td>41</td>
</tr>
<tr>
<td>Mittelwertbildung über den Zyklus</td>
<td>11.4.7</td>
<td>45</td>
</tr>
<tr>
<td>Mittelwertbildung über die Messzeit</td>
<td>11.4.5</td>
<td>44</td>
</tr>
<tr>
<td>Mittelwertbildung über manuelle Einzelmessungen</td>
<td>11.4.3</td>
<td>43</td>
</tr>
<tr>
<td>Mittelwertbildung über Messstellen</td>
<td>11.4.8</td>
<td>46</td>
</tr>
<tr>
<td>Monitor-Mode</td>
<td>12.2.5</td>
<td>61</td>
</tr>
<tr>
<td>Multiplexer</td>
<td>12.4.7</td>
<td>75</td>
</tr>
<tr>
<td>Netzbetrieb</td>
<td>7.1</td>
<td>19</td>
</tr>
<tr>
<td>Netzmessung</td>
<td>11.4.4</td>
<td>43</td>
</tr>
<tr>
<td>Neuinitialisierung</td>
<td>7.5</td>
<td>20</td>
</tr>
<tr>
<td>Nullpunktabgleich</td>
<td>11.2.2</td>
<td>34</td>
</tr>
<tr>
<td>Nullpunktkorrektur</td>
<td>12.3.7</td>
<td>66</td>
</tr>
<tr>
<td>Numerierung von Messungen</td>
<td>12.2.3</td>
<td>60</td>
</tr>
<tr>
<td>O2-Sättigung</td>
<td>11.2.6</td>
<td>34, 36</td>
</tr>
<tr>
<td>Öffner</td>
<td>9.2.4</td>
<td>25, 27</td>
</tr>
<tr>
<td>ON</td>
<td>10.1</td>
<td>28</td>
</tr>
<tr>
<td>Optionen</td>
<td>15.1</td>
<td>87</td>
</tr>
<tr>
<td>Optokoppler</td>
<td>9.3</td>
<td>27</td>
</tr>
<tr>
<td>P-OFF</td>
<td>10.1</td>
<td>28</td>
</tr>
<tr>
<td>Passwort</td>
<td>12.8</td>
<td>83</td>
</tr>
<tr>
<td>Anhang</td>
<td>11.2.5</td>
<td>34, 36</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>pH-Sonde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>9.2.5</td>
<td>27</td>
</tr>
<tr>
<td>Port anwählen</td>
<td>12.6.2</td>
<td>80</td>
</tr>
<tr>
<td>Potentialtrennung</td>
<td>8.4</td>
<td>24</td>
</tr>
<tr>
<td>Produktübersicht</td>
<td>15.1</td>
<td>87</td>
</tr>
<tr>
<td>Programmier-Menüs</td>
<td>12</td>
<td>28, 55</td>
</tr>
<tr>
<td>Programmieren</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Programmierte Analogwertausgabe</td>
<td>12.6.3</td>
<td>82</td>
</tr>
<tr>
<td>Psychrometer</td>
<td>11.2.6</td>
<td>36</td>
</tr>
<tr>
<td>Querschnitt</td>
<td>11.4.9</td>
<td>48</td>
</tr>
<tr>
<td>Relais</td>
<td>9.3</td>
<td>27</td>
</tr>
<tr>
<td>Relais-Adapter</td>
<td>12.4.3</td>
<td>73</td>
</tr>
<tr>
<td>Relais-Trigger-Analog-Einschub</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>Relais-Trigger-Analog-Module</td>
<td>12.6.2</td>
<td>79</td>
</tr>
<tr>
<td>Relaiszuordnung</td>
<td>12.4.3</td>
<td>73</td>
</tr>
<tr>
<td>Ringspeicher</td>
<td>12.2.2</td>
<td>59</td>
</tr>
<tr>
<td>Schließer</td>
<td>9.2.4</td>
<td>25, 27</td>
</tr>
<tr>
<td>Schraubklemmstecker</td>
<td>9.2.4</td>
<td>27</td>
</tr>
<tr>
<td>Sicherheitshinweise</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Skalierung</td>
<td>12.3.6</td>
<td>65</td>
</tr>
<tr>
<td>Skalierung der Analogausgabe</td>
<td>12.6.3</td>
<td>82</td>
</tr>
<tr>
<td>Sleepmodus</td>
<td>12.2.5</td>
<td>60</td>
</tr>
<tr>
<td>Software</td>
<td>5.1.3</td>
<td>17</td>
</tr>
<tr>
<td>Sollwerteingabe</td>
<td>11.2.4</td>
<td>35</td>
</tr>
<tr>
<td>Sondermessbereiche</td>
<td>12.3.11</td>
<td>71</td>
</tr>
<tr>
<td>Spannungsbelastung</td>
<td>9.2.1</td>
<td>26</td>
</tr>
<tr>
<td>Spannungsversorgung</td>
<td>15.1</td>
<td>27, 86</td>
</tr>
<tr>
<td>Speicher</td>
<td>12.2.1</td>
<td>58</td>
</tr>
<tr>
<td>Speicher ausgeben</td>
<td>11.3.3</td>
<td>39</td>
</tr>
<tr>
<td>Speicher löschen</td>
<td>12.2.6</td>
<td>63</td>
</tr>
<tr>
<td>Speicheraktivierung</td>
<td>12.1.2</td>
<td>55</td>
</tr>
<tr>
<td>Speicherausgabe</td>
<td>12.2.6</td>
<td>62</td>
</tr>
<tr>
<td>Speichercard</td>
<td>12.2.1</td>
<td>2, 58</td>
</tr>
<tr>
<td>Speicherplatz</td>
<td>11.3.3</td>
<td>39</td>
</tr>
<tr>
<td>Spezialfunktionen</td>
<td>12.4</td>
<td>72</td>
</tr>
<tr>
<td>Spezialmessungen</td>
<td>11.6</td>
<td>50</td>
</tr>
<tr>
<td>Spitzenwertspeicher</td>
<td>11.1.2</td>
<td>32</td>
</tr>
<tr>
<td>Sprache</td>
<td>12.5.4</td>
<td>77</td>
</tr>
<tr>
<td>Standardanzeige</td>
<td>11.1</td>
<td>32</td>
</tr>
<tr>
<td>Starten und Stoppen von Messungen</td>
<td>12.2.4</td>
<td>60</td>
</tr>
<tr>
<td>Staudruck</td>
<td>11.2.6</td>
<td>36</td>
</tr>
<tr>
<td>Steigungskorrektur</td>
<td>12.3.7</td>
<td>66</td>
</tr>
<tr>
<td>Stromausfall</td>
<td>12.6.2</td>
<td>80</td>
</tr>
<tr>
<td>Stromausgang</td>
<td>12.6.3</td>
<td>82</td>
</tr>
<tr>
<td>Stromverbrauch</td>
<td>9.3</td>
<td>27</td>
</tr>
<tr>
<td>Stromversorgung</td>
<td>9.1</td>
<td>19, 25</td>
</tr>
</tbody>
</table>
Stichwortverzeichnis

Tastatur 10 2, 28
Technische Daten 15.1 27, 86
Temperaturdrift 9.3 27
Temperaturkompensation 12.3.9 36, 69
Terminalbefehle 9.2.5 27
Timer 11.4.6 45
Trigger-Analog-Module 12.6.2 79
Triggereingänge 9.3 26f.
Triggereingänge 12.6.2 80
U-Sensor Min 12.4.2 72
Uhrzeit 12.1.1 55
Usermenü 11.7.2 53
Vergleichsstellenkompensation 11.2.7 37
Vergleichsstellentemperatur 12.5.8 37, 78
Vernetzung 12.5.2 76
Verriegelung der Fühlerprogrammierung 12.3.4 64
Verriegelung Funktionen 12.8 83
Verriegelung Menüs 12.8 83
VK-Temperatur 12.5.8 78
Volumenstrommessung 11.4.9 48
Wandlungsrate 12.1.3 56
Wärmeleistung 11.6.1 51
Watchdog 12.6.2 80
Wet-Bulb-Globe-Temperatur 11.6.2 51
WIN-Control 5.1.3 17
Zeit und Datum vom Maximalwert 11.1.2 32
Zeiten 12.1 55
Zeitkonstante 11.4.1 27, 42
Zubehör 15.1 87
Zugangsberechtigung 12.8 83
Zusatzkanäle 8.2 21
Zweipunktabgleich 11.2.4 35
Zyklen 12.1 55
Zyklische Ausgabe 11.3.2 38
15.3 Ihre Ansprechpartner
Ahlborn Mess- und Regelungstechnik GmbH,
Eichenfeldstraße 1-3, D-83607 Holzkirchen,
Tel. +49(0)8024/3007-0, Fax +49(0)8024/300710
Internet: http://www.ahlborn.com, email: amr@ahlborn.com

Kundendienst / Hotline
Florian Plessner, Telefon 08024/3007-38

Beratungsingenieure in Ihrer Region

Niedersachsen - Hamburg - Bremen - Schleswig-Holstein
Dipl.-Ing. Kristian Schnelle,
Hamelner Strasse 74, 37619 BODENWERDER,
Tel. (0 55 33) 93 46 26, Fax (0 55 33) 93 46 27

Berlin - Brandenburg - Sachsen
Dipl. Ing. (FH) Andreas Fürtig,
Medewitzer Str. 34, 02633 GAUSSIG BEI BAUTZEN,
Tel. (03 59 30) 5 06 06, Fax (03 59 30) 5 06 28, Tel. D-Netz (01 70) 2 77 77 38

Thüringen - Sachsen-Anhalt - Mecklenburg-Vorpommern
Dipl.-Ing. Christian Rinn,
Randsiedlung 21, 07607 EISENBERG,
Tel./Fax (03 66 91) 5 22 07, Tel. D-Netz (01 71) 2 42 32 01

Nordrhein-Westfalen
Roberto Abonizio
Basteistraße 50, 53173 BONN
Tel. (0228) 387 666 46, Fax (0228) 387 666 47

Hessen - Rheinland-Pfalz - Saarland
Armin Bollmann GmbH Ingenieurbüro für Mess- und Regelungstechnik,
Mühlheimer Str. 337, 63075 OFFENBACH/MAIN,
Tel. (0 69) 86 50 86, Fax (0 69) 86 55 17, Tel. D-Netz (01 71) 7 78 65 08

Nord-Bayern
Dipl.-Ing. Christian Rinn,
Randsiedlung 21, 07607 EISENBERG,
Tel./Fax (03 66 91) 5 22 07, Tel. D-Netz (01 71) 2 42 32 01

Baden-Württemberg
Christian Schaufler, Unterer Mühlweg 7, 72762 Reutlingen
Tel.: (0 171) 3322588, E-Mail: schaufler@ahlborn.com

Süd-Bayern
Dipl.-Ing. Hans Trinczek GmbH Mess- und Regelungstechnik,
Kolpingstraße 24, 86916 KAUFERING,
Tel. (0 81 91) 6 62 39, Fax (0 81 91) 6 52 93, Tel. D-Netz (01 70) 2 79 03 60
Trotz großer Sorgfalt sind fehlerhafte Angaben nicht auszuschließen!
Technische Änderungen vorbehalten!