

# **Operating instructions**

|                       |                                                                                                      | $\bigcirc$      |
|-----------------------|------------------------------------------------------------------------------------------------------|-----------------|
| • START<br>• REC      | C ▶ REC COM         I▶ ▶I         R01 *           01:         strömung         m/s                   |                 |
| COM     AVG     ALARM | <b>28.67</b> Maxwert: 31.34 mls Minwert: 25.37 mls Zyklus-Timer: 00:02:30 Un Speicher Frei: 512.0 kB | SLEEP ON CHARGE |
|                       | STOP MANU M PRINT ESC<br>F1 F2 🔶 F3 F4                                                               |                 |
|                       |                                                                                                      |                 |

# V6

# Data acquisition system ALMEMO<sup>®</sup> 5690-2CPU

V1.1 10.06.2008

www.ahlborn.com

# **1. OPERATING CONTROLS**

# 1.1 Front panel



### (1) LCD see 8.

### Status bar

- C Continuous measuring point scan
- ▶, II Start / stop measuring
- REC Record to memory COM
- Measured value output id, di Program the start / end
- of measuring
- R01 Alarm relay state
- \* \* Illumination ON, pause
- Battery operation / charge status

#### 13 rows for functions Function of keys F1, F2, F3, F4

### (2) Status LEDs

- START Measuring operation started
- REC Measuring with results saved
- COM Measuring with output
- AVG Averaging
- ALARM Limit value overshoot Sensor breakage, LoBat
- LOCKED Keys locked

### (2) Status LEDs

- ON Device is switched ON.
- SLEEP Flashes in sleep mode.
- CHARGE Rechargeable battery is being charged. Goes out as soon as fully charged.

### (3) Keypad see 8.





Switch on Program

To switch OFF

press and hold down

Function selection, input Most recent menu

#### (4) Slot. multimedia card MMC

Slot for MMC see 10.2.1

### 1.2 Rear view



## (5) Plug-in CPU module CPU measuring circuit

- (a) Pushbutton No function
- (b) Code switches see 10.5.2
  - G Device address 00 to 99 With option XU or XM 3 addresses are occupied. Device address 0 to 7 only
- (c) Status LEDs
  - ON Device is switched ON.
  - START Measuring operation started
  - REC Measuring with results saved
  - **COM** Measuring with output
  - ALARM Limit value overshoot Sensor breakage, LoBat (flashes)

### (d) Output sockets see 10.6.

- A1 Interface / optic fiber (ZA1909-DK5/L) USB interface (ZA1919-DKU) RS 422 (ZA 5099-NVL/NVB) Ethernet (ZA 1945-DK)
- A2 Network cable (ZA1999-NK5/NKL) Analog output (ZA 1601-RK) V5 / V6 periphery (ZA 8000/6-RTA)
- A3 V6 periphery (ZA 8006-RTA3)
- A4 V6 periphery (ZA 8006-RTA3)
- **A5** V6 trigger input (ZA 1006-ET/EK)
- P0 option Relay trigger, analog, internal
- (e) DC connection socket see 6. Mains adapter (ZB 1212-NA6, 12 V, 3 A) Cable, el. isol.(ZB 3090-UK2, 10 to 30 V, 1.2 A) Status LED

POWER Mains supply, present

(f) Ground socket

# Extension of measuring points with selector switch boards see 7.3:

| (6)<br>(g) | Plug-in module U-A10 :<br>Measuring inputs 0 to 9 | Selector switch board for 10 ALMEMO socketsx0 to x9for any 10 ALMEMO sensorsx+10 to x+39maximum 30 additional channels                      |
|------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (h)        | Code switches M                                   | Measuring point x 10 to 90                                                                                                                  |
| (7)        | Plug-in module U-MU :<br>Measuring inputs         | Selector switch board for 10x MU connectorx0 to x9for 10 sensors without their own power supplyx+10 to x+39maximum 30 additional channels   |
|            | Code switch, internal                             | Measuring point x 10 to 90 on board                                                                                                         |
| (8)        | Plug-in module U-KS :<br>Measuring inputs         | Selector switch board for 2 clamp connectorsx0 to x9for 10 sensors without their own power supplyx+10 to x+39maximum 30 additional channels |
|            | Code switch, internal                             | Measuring point x 10 to 90 on board                                                                                                         |
| (9)        | Plug-in module U-TH :<br>Measuring inputs         | Selector switch board with 10 thermal socketsx0 to x9x+10 to x+39maximum 30 additional channels                                             |
|            | Code switch, internal                             | Measuring point x 10 to 90 on board                                                                                                         |
| Activ      | ve selector switch boards                         | with their own measuring circuit (option 5600 M) are labeled                                                                                |

Active selector switch boards with their own measuring circuit (option 5690-M) are labeled with M instead of U. M-A10, M-MU, M-KS, M-TH

- (10) Plug-in module AP : Rechargeable battery (option, see 6.3)
- (i)
   Connection socket
   DC-A
   Mains adapter 12 V (ZB 1212-NA6, 12 V, 5 A)

   (j)
   Status LEDs
   DC-A
   Mains supply, present

   CHARGE
   Batteries are being charged.

# 2. TABLE OF CONTENTS

| 1. | OPERATING CONTROLS                                            | 2         |
|----|---------------------------------------------------------------|-----------|
|    | 1.1 Front panel                                               | 2         |
|    | 1.2 Rear view                                                 | 3         |
| 3. | GENERAL                                                       | 8         |
|    | 3.1 Warranty                                                  | 8         |
|    | 3.2 Standard delivery                                         | 9         |
|    | 3.3 How to deal with rechargeable batteries (option)          | 9         |
|    | 3.4 Special notes on use                                      | 9         |
| 4. | INTRODUCTION                                                  | 10        |
|    | 4.1 How the system functions                                  | 10        |
|    | 4.1.1 Sensor programming                                      | 11        |
|    | 4.1.2 Measuring operations                                    | 12        |
|    | 4.1.3 Process control                                         | 13        |
| 5. | COMMISSIONING                                                 | 15        |
| 6. | POWER SUPPLY                                                  | 16        |
|    | 6.1 Mains operation                                           | 16        |
|    | 6.2 External DC voltage supply                                | 16        |
|    | 6.3 Operation with rechargeable battery (only with ES5690-AP) | 16        |
|    | 6.4 Sensor supply                                             | 17        |
|    | 6.5 Switching ON / OFF, reinitialization                      | 17        |
|    | 6.6 Data buffering                                            | 17        |
| 7. | CONNECTING THE SENSORS / TRANSDUCERS                          | 18        |
|    | 7.1 Sensor / transducer                                       | 18        |
|    | 7.2 Measuring inputs and additional channels                  | 19        |
|    | 7.3 Selector switch boards                                    | 19        |
|    | 7.4 Potential separation                                      | 21        |
| 8. | DISPLAY AND KEYPAD                                            | 22        |
|    | 8.1 Display and menu selection                                | 22        |
|    | 8.2 Status symbols in the display and status LEDs             | 23        |
|    | 8.3 FUNCTION Keys                                             | 23        |
|    | 0.4 Function Selection                                        | 24        |
| •  |                                                               | 24        |
| 9. | MEASURING WITH THE MEASURING MENUS                            | 25        |
|    | 9.1 Measuring with a measuring point                          | <b>20</b> |
|    | 9.1.1 Selecting a measuring point                             | 20        |
|    | 9.2 Measured value correction and compensation                | 20        |
|    | 9.2.1 Set measured value to zero                              | 27        |
|    | 9.2.2 Zero-point adjustment                                   | 28        |
|    | 9.2.3 Sensor adjustment for chemical sensors and probes       | 28        |
|    | 9.2.4 Two-point adjustment by entering setpoint               | 29        |

|     | 9.2.5 Temperature compensation                                | 30                   |
|-----|---------------------------------------------------------------|----------------------|
|     | 9.2.6 Atmospheric pressure compensation                       | 30                   |
|     | 9.2.7 Cold junction compensation                              | 31                   |
|     | 9.3 Measuring point scan and output                           | 32                   |
|     | 9.3.1 Once-only output / saving of all measuring points       | 32                   |
|     | 9.3.2 Cyclic output / saving of all measuring points          | 32                   |
|     | 9.3.3 Memory capacity, Memory output, clearing the memory     | 33                   |
|     | 9.3.4 Output menu functions                                   | 33                   |
|     | 9.3.5 Displaying measured values as a line graph              | 34                   |
|     | 9.4 Averaging                                                 | 35                   |
|     | 9.4.1 Smoothing meas. values by means of a sliding average    | 36                   |
|     | 9.4.2 Averaging mode                                          |                      |
|     | 9.4.3 Averaging over individual manual meas, operations       | 30                   |
|     | 9.4.4 Networked measuring                                     | 37                   |
|     | 9.4.5 Averaging over the meas, time of measuring duration     |                      |
|     | 9.4.0 Medsuring unite, Medsuring duration, Timer              |                      |
|     | 9.4.7 Averaging over the cycle                                |                      |
|     | 9.4.9 Volume flow measuring                                   | <del>-</del> 0<br>41 |
|     | 9 5 Display of several measuring points                       | 42                   |
|     | 9.5.1 Menu Multi-channel display and bar chart                | 42                   |
|     | 9.5.2 Differential measurement                                |                      |
|     | 9.5.3 Menu Measuring points list                              | 43                   |
|     | 9.6 Wizards for special measuring operations                  | 44                   |
|     | 9.6.1 Thermal coefficient                                     | 44                   |
|     | 9.6.2 Wet bulb globe temperature                              | 44                   |
|     | 9.7 User menus                                                | 45                   |
|     | 9.7.1 Function range                                          | 45                   |
|     | 9.7.2 Configuring the menus                                   | 46                   |
|     | 9.7.3 Function printouts                                      | 47                   |
| 10. | PROGRAMMING VIA THE PROGRAMMING MENUS                         | 48                   |
|     | 10.1 Times and cycles                                         | 48                   |
|     | 10.1.1 Date and time-of-day                                   | 48                   |
|     | 10.1.2 Cycle with memory activation and output format         | 48                   |
|     | 10.1.3 Measuring rate, Continuous measuring point scan        | 49                   |
|     | 10.1.4 Start time Start date End time End date Meas. duration | 51                   |
|     | 10.2 Measured value memory                                    | 51                   |
|     | 10.2.1 Memory with multimedia card                            | 52                   |
|     | 10.2.2 Measured data recording                                | 53                   |
|     | 10.2.3 Numbering of measuring operations                      | 54                   |
|     | 10.2.4 Starting and stopping measuring operations             |                      |
|     | 10.2.5 Scanning mode                                          |                      |
|     | 10.2.0 Memory Output                                          |                      |
|     | 10.3 1 Selecting the input channel                            | <b>3</b> /<br>57     |
|     | יט.ט. ו טפופטנוווץ נוופ וווףענ טומוווופו                      |                      |

| 10.3.2 Measuring point designation                             | 58           |
|----------------------------------------------------------------|--------------|
| 10.3.3 Averaging mode                                          | 58           |
| 10.3.4 Locking the sensor programming                          | 59           |
| 10.3.5 Limit values                                            | 59           |
| 10.3.6 Scaling, Decimal point setting                          | 60           |
| 10.3.7 Correction values                                       | 60           |
| 10.3.8 Change the units                                        | 61           |
| 10.3.9 Selecting the measuring range                           | 61           |
| 10.3.10 Function channels                                      | 64           |
| 10.3.11 Special measuring ranges, linearization, multi-point c | alibration . |
| 65                                                             |              |
| 10.4 Special functions                                         | 66           |
| 10.4.1 Print cycle factor                                      | 66           |
| 10.4.2 Sensor supply voltage, minimum                          | 66           |
| 10.4.3 Actions in the event of a limit value being exceeded    | 67           |
| 10.4.4 Analog output start / end                               | 68           |
| 10.4.5 Output function                                         | 68           |
| 10.4.6 Reference channel 1                                     | 69           |
| 10.4.7 Reference channel 2 or multiplexer                      | 69           |
| 10.4.8 Element flags                                           | 69           |
| 10.5 Device configuration                                      | 70           |
| 10.5.1 Device designation                                      | 70           |
| 10.5.2 Device address and networking                           | 70           |
| 10.5.3 Baud rate, Data format                                  | 71           |
| 10.5.4 Language                                                | 71           |
| 10.5.5 Illumination and contrast                               | 71           |
| 10.5.6 Atmospheric pressure                                    | 72           |
| 10.5.7 Hysteresis                                              | 72           |
| 10.5.8 Operating parameters                                    | 72           |
| 10.6 Output modules                                            | 72           |
| 10.6.1 Data cables                                             | 73           |
| 10.6.2 Relay trigger adapter, analog                           | 74           |
| 10.7 Power supply menu                                         |              |
| 10.8 Locking and calibration menu (option KL)                  | 77           |
| 11. TROUBLE-SHOOTING                                           | 78           |
| 12. ELECTROMAGNETIC COMPATIBILITY                              | 79           |
| 13. APPENDIX                                                   | 80           |
| 13.1 Technical data                                            | 80           |
| 13.2 Product overview                                          | 81           |
| 13.3 Keywords                                                  | 83           |
| 13.4 Your contact                                              | 89           |

# 3. GENERAL

Congratulations on your purchase of this new and innovative ALMEMO<sup>®</sup> data acquisition system. Thanks to the patented ALMEMO<sup>®</sup> connector the device configures itself automatically and thanks to the supplied AMR-Control software its operation should be fairly straightforward. The device can, however, be used with such a wide range of sensors and peripherals and offers many different special functions. You are advised therefore to properly familiarize yourself with the way the sensors function and with the device's numerous possibilities and to carefully read these operating instructions and the appropriate sections in the ALMEMO<sup>®</sup> Manual. This is absolutely necessary to avoid operating and measuring errors and to prevent damage to the device. To help you find the answers to your questions quickly and easily there is a comprehensive index at the end both of these instructions and of the Manual.

# 3.1 Warranty

Each and every device, before leaving our factory, undergoes numerous quality tests. We provide a guarantee, lasting two years from delivery date, that your device will function trouble-free. Before you return your device to us, please observe the advisory notes in Chapter 11 Trouble-shooting. In the unlikely event that the device proves defective and you need to return it please wherever possible use the original packaging material for dispatch and enclose a clear and informative description of the fault and of the conditions in which it occurs.

This guarantee will not apply in the following circumstances :

- The customer attempts any form of unauthorized tampering and alteration inside the device.
- The device is used in environments and conditions for which it is not suited.
- The device is used with an unsuitable power supply and / or in conjunction with unsuitable peripheral equipment.
- The device is used for any purpose other than that for which it is intended.
- The device is damaged by electrostatic discharge or lightning.
- The user fails to observe the operating instructions.

The manufacturer reserves the right to change the product's characteristics in the light of technical progress or to benefit from the introduction of new components.

# 3.2 Standard delivery

When you unpack the device check carefully for any signs of transport damage and ensure that delivery is complete.

Measuring instrument ALMEMO<sup>®</sup> 5690-2C Multimedia card and USB card reader Mains adapter ZB 1212-NA6 12 V, 3 A These operating instructions ALMEMO<sup>®</sup> Manual CD with the AMR-Control software and various useful accessories

In the event of transport damage please retain the packaging material and inform your supplier immediately.

# 3.3 How to deal with rechargeable batteries (option)

 $\bigwedge$ 

Usually when the device is delivered the batteries have not yet been charged. First of all therefore the batteries should be charged using the mains adapter provided; continue charging until the **CHARGE** LED goes out.

Rechargeable batteries must never be short-circuited or thrown on the fire.

Rechargeable batteries are special waste and must not be discarded together with normal domestic waste.

# 3.4 Special notes on use

- If the device is brought into the work-room from a cold environment there is a risk that condensation might form on the electronics. In measuring operations involving thermocouples pronounced changes in temperature may cause substantial measuring errors. You are advised therefore to wait until the device has adjusted to the ambient temperature before starting to use it.
- Before using the mains adapter make sure that the mains voltage is suitable.
- Be sure to observe the maximum load capacity of the sensor power supply.
- Sensors with their own integrated power supply are not electrically isolated from one another.
- Do not run sensor lines in the vicinity of high-voltage power cables.
- Before you touch any sensor lines, ensure that all static electricity has been discharged.

# 4. INTRODUCTION

The data acquisition system ALMEMO<sup>®</sup> 5690-2CPU is a new member in our family of unique measuring devices - all equipped with Ahlborn's patented ALMEMO<sup>®</sup> connector system. The intelligent ALMEMO<sup>®</sup> connector offers decisive advantages when connecting sensors and peripherals because all parameters are stored in an EEPROM located on the connector itself; repeat programming is thus no longer necessary. All sensors and output modules can be connected to all AL-MEMO<sup>®</sup> measuring instruments in the same way. Programming and functioning are identical for all units. The following points apply to all devices in the ALMEMO<sup>®</sup> measuring system; these are described in detail in the ALMEMO<sup>®</sup> Manual which is included in delivery with each device :

Detailed explanation of the ALMEMO<sup>®</sup> system (Manual Ch 1) Overview of the device functions and measuring ranges (Manual Ch 2) Basic principles, operating instructions, and technical data for all sensors Options for connecting your own existing sensors (Manual Ch 4) All analog and digital output modules (Manual Section 5.1) Interface modules USB, RS232, optic fiber, Ethernet (Manual Section 5.2) The whole ALMEMO<sup>®</sup> networking system (Manual Section 5.3) All functions and their operation via the interface (Manual Ch 6)

Complete list of interface commands with all the printouts (Manual Ch 7) The operating instructions you are now reading cover only those features and controls that are specific to this device. Many sections therefore also refer to the more detailed description in the Manual; (see Manual, Section xxx).

# 4.1 How the system functions

The ALMEMO<sup>®</sup> 5690-2CPU system has a CPU measuring circuit board for over 70 measuring ranges without their own measuring inputs. These are implemented in the form of various selector switch boards. The 84-DU housing can accommodate up to 190 electrically isolated inputs (maximum 250 channels) - for all ALMEMO<sup>®</sup> sensors (U-A10) but also for sensors with thermal connectors (U-TH) or free ends (U-MU or U-KS). High scanning rates can be achieved thanks to the active selector switch boards with their own measuring circuit (option 5690-M). To accommodate these various expansion stages the desktop housing is available in 32-DU / 84-DU sizes and a 19-inch rack is available. For operation purposes the device incorporates an illuminated LCD graphics display and a soft-key keypad with cursor block. The display can be adapted by means of configurable user menus to suit any application. For the purposes of recording and logging data the device incorporates a 2-MB battery-buffered RAM (or non-volatile FeRAM, available as an option ) with capacity for some 400,000 measured values. With the standard memory connector and multimedia card storage capacity is virtually unlimited. There are 6 output sockets which can be used to connect any ALMEMO® output modules, e.g. analog output, digital interfaces, trigger input, or alarm contacts. Several devices can be networked by simply linking them together via cable. The system is fed by default via a 12-V mains adapter. There is also the option of using a rechargeable battery module.

### 4.1.1 Sensor programming

The measuring channels are programmed, completely and automatically, by the AL-MEMO<sup>®</sup> connectors. However, the user can easily supplement or modify this programming via the keypad or via the interface.

### Measuring ranges

Appropriate measuring ranges are available for all sensors with a non-linear characteristic, e.g. 10 thermocouple types, NTC and Pt100 probes, infrared sensors, and flow transducers (rotating vanes, thermoanemometers, Pitot tubes). For humidity sensors additional function channels are available for calculating humidity variables such as dew point, mixture ratio, vapor pressure, and enthalpy. Even complex chemical sensors are supported. Measured values from other sensors can also be acquired using the voltage, current, and resistance ranges with individual scaling in the connector. Existing sensors can also be used - so long as the appropriate ALMEMO<sup>®</sup> connector is connected via its screw terminals. For digital input signals, frequencies, and pulses, adapter connectors are available with an integrated microcontroller. It is thus possible to connect virtually any sensor to any ALMEMO<sup>®</sup> measuring instrument and to change sensors without the need for any extra settings.

### **Function channels**

Maximum, minimum, and differential values of certain measuring points can be programmed as function channels and can be processed and printed like normal measuring points. There are also function channels available for special measuring tasks, e.g. to determine volume flow, temperature coefficient Q/ $\Delta$ T, and wet bulb globe temperature, etc..

### Units

The 2-character units display can be adapted for each measuring channel so that both the display and the printout always indicate the correct units, e.g. when a transmitter is connected. Conversion between °C (Centigrade) and °F (Fahrenheit) is performed automatically.

### Measuring point designation

Each sensor is identified by means of a 10-character alphanumeric name. It is entered via the keypad or the interface and appears in the display, in the printout, or on the computer screen.

### Correction of measured values

The measured value on each measuring channel can be corrected both in terms of zero-point and gain; this means that even sensors usually requiring initial adjustment (e.g. expansion, force, pH) can be freely interchanged. Zero-point correction and, partly at least, gain adjustment can be performed at the touch of a button.

### Scaling

The corrected measured value on each measuring channel can also be further scaled in terms of zero-point and gain - using the base value and factor. The decimal point position can be set by means of the exponent function. The scaling values can be calculated automatically by setting to zero and entering the nominal setpoint or via the scaling menu.

#### Limit values and alarm

Per measuring channel two limit values can be set (1 maximum and 1 minimum). In the event of one of these limit values being exceeded two internal relays (option) or external relay output modules actuate the alarm contacts; these can be allocated individually to specific limit values. Hysteresis is set by default to 10 digits; however, it can be adjusted to any value between 0 and 99 digits. The exceeding of a limit value can also be used to automatically start or stop measured value recording or to initiate other specified action.

#### Sensor locking

All sensor data stored in the connector EEPROM can be protected by means of a graduated locking function against undesired access.

### 4.1.2 Measuring operations

Up to 4 measuring channels are available per transducer; i.e. it is also possible to evaluate double sensors, individually scaled sensors, and sensors with function channels. All activated measuring points are normally scanned continuously one after the other at the selected measuring rate (standard 10 mops, maximum 100 mops). Data is output, if available, to the interface, to a measured value memory, or to an analog output. A higher scanning rate of up to 400 mops can be achieved by using active selector switch boards (option 5690-M); these operate in parallel and are scanned via a high-speed bus. In this mode semi-continuous measuring point scanning is no longer supported.

#### Measured values

The measured values of 1 to 20 measuring points can be indicated on the display using a variety of menus, some user-configurable, in three font sizes, and in the form of a bar chart or line graph. Measured values are acquired automatically with auto-zero and self-calibration; however, they can also be corrected and scaled arbitrarily as required. With most sensors a sensor breakage is detected automatically.

#### Analog output and scaling

Each measuring point can be scaled by means of analog start and analog end in such a way that the measuring range thus defined covers the full range of the bar chart or line graph or of an analog output (2 V, 10 V or 20 mA). At the analog output the device can output the measured value from any measuring point or a programmed value.

### Measuring functions

With some sensors, to achieve optimal measured value acquisition, certain special measuring functions are required. Cold junction compensation is provided for thermocouples; temperature compensation is provided for dynamic pressure, pH, and conductivity probes; and atmospheric pressure compensation is provided for humidity sensors, dynamic pressure sensors, and  $O_2$  sensors.

### Maximum and minimum values

Each measuring operation acquires and stores the maximum and minimum values with date and time-of-day. These values can then be displayed, printed out, or deleted from memory.

### Average value

Measured values can be expressed as a sliding average obtained by continuous automatic smoothing or manually averaged over a certain period or cycle or over a series of individual measuring operations.

### 4.1.3 Process control

To record the measured values from all connected sensors in digital form measuring point scanning is performed continuously with measured value output according to a time-based process control. This may be per output cycle or, if really rapid results are required, at the measuring rate itself. The measuring operation can be started and stopped by means of the keyboard, the interface, an external trigger signal, the real-time clock, or by a specified limit value being exceeded.

#### Date and time-of-day

All measuring operations can be accurately logged using the real-time clock with date function or in terms of the pure measuring time. For the purposes of automatically starting / stopping a measuring operation, the start / stop date and time-of-day can be programmed.

#### Cycle

The cycle can be programmed to any value between 00:00:01 (1 second) and 59:59:59 (hh:mm:ss). This function permits cyclic output of measured values to the interfaces or to the memory and provides cyclic calculation of the average value.

#### Print cycle factor

The print cycle factor can be used to restrict data output from particular channels; this may prove necessary in order to reduce excessive data flow especially while data is being saved.

#### Averaging over measuring point scans

The measured values from measuring point scans can be averaged either over the whole measuring duration or over the specified cycle. These average values can then be output and saved on a cyclic basis to function channels provided for this purpose.

#### Measuring rate

The possible measuring rates are 2.5 / 10 / 50 / 100 mops (measuring operations per second) and on just one channel even 400 mops. Recording can be accelerated if all measured values are saved to memory and / or output to the interface at the full measuring rate.

#### Measured value memory

To save measured values there are 3 methods.

As standard the device incorporates a 2-MB battery-buffered RAM; this provides sufficient storage capacity for up to 400,000 measured values. For higher reliability for applications conducted over long periods a non-volatile FeRAM is available as an option. Both memory types can be organized and configured in either linear or ring form. Output is via the interface. Selection can be specified according to a time interval or number.

Or alternatively a multimedia memory card can be used as storage medium. This

#### 4. Introduction

solution offers a virtually limitless memory capacity. From the memory card files can be read out very quickly via the standard card reader. However, ring memory and selective readout are not possible.

#### Numbering of measuring operations

By entering a number, single scans or entire series of measuring operations can be identified and selectively read out from the memory.

#### **Control outputs**

Up to 90 output relays or analog outputs in appropriate external adapters (ZA8006-RTA3) or on plug-in boards can be individually addressed.

#### Operation

All measuring and function values can be displayed in different menus on the dot matrix LCD screen. Three user menus can be individually configured for your specific applications from a range of nearly 50 functions. You can use texts, lines, and blank lines to arrange and format the layout in a style suited to your application. Nine keys (four of them soft keys) can be used to operate the device. Sensors, device, and process control can thus be fully programmed.

#### Output

All data logs, all saved measured values, and all programming parameters can be output to any peripheral equipment. An RS232 / RS422 / USB / Ethernet interface is available using the appropriate interface cable. Wireless communication is also possible via Bluetooth. Measured data can be output in list format / column format / table format. Files in table format can be processed directly using any standard spreadsheet software or the Win-Control software package. The print header can be programmed to refer specifically to your company or to your application.

#### Networking

All ALMEMO<sup>®</sup> devices can be addressed and can be easily networked by simply linking them together via network cable or for longer distances via RS422 network distributors. The CPU with option XU or XM occupies 3 addresses because each address can manage only 100 measuring channels.

#### Software

Each ALMEMO<sup>®</sup> Manual is accompanied by the software package AMR-Control; this can be used to configure the measuring instrument and user menus, to program the sensors, and to read out from the measured value memory. Using the integrated terminal, measuring operations can also be performed online. The software package WIN-Control is also available; this can be used for the purposes of measured value acquisition via networked devices, for graphical presentation, and for more complex data processing.

# **5. COMMISSIONING**

Sensor connection Connect sensors to sockets M0 to Mxx (6q). see 7. Power supply With mains adapter connected to socket DC (5e) see 6.3, 6.1 Switching ON Press ON PROG (3) key (3) on front panel see 6.5. Automatic display of last measuring menu see 9. Keys Menu selection MEASURING menus Activate by pressing <ESC> or F4 e.g. select menu Standard disPlay see 8.1 / V ... (F) To call up the menu press  $\overline{}$ **Select measuring point** (see 9.1.1) by pressing keys  $\wedge$ ... (M) / Select function **maximum** / **minimum** value (see 8.4) PROG . Clear maximum / minimum values see 9.1.2 < CLR > or F1 sk **ALMEMO 5690-2C** ж C > REC COM |> > RO1 \* HOD **MEASURING** menus Standard disPlay 01: Flow m/s U1 Meas. value correction U2 Average value U3 Volume 28.67 Data logger Multi-channel disPlay \*Measuring Points list Bar chart Max value 25.37 mls 00:02:30 Un Line graph Min value Cycle timer Menul WIZARD menus Memory free 512.0 kB Menu2 PROGRAMMING menus START MANU M PRINT ESC P-OFF \*ON F MENU1 MENU2 F2 F1 F3 F4 F1 F2 | F3 F4 PROG 🕨  $\overline{}$ PROG  $\rightarrow$ Output of measured values or memory via interface - Connect peripheral device via data cable to socket A1 (5d). see Manual 5.2. - On the peripheral device set 9600 baud, 8 data bits, 1 stop bit, no parity. Once-only output / saving see 9.3.1 <MANU> or F2 Cyclic measuring Select cycle timer PROG . Cycle timer IVELSIOSn Enter cycle (hh:mm:ss) see 8.5 Output format List ' ', Columns 'n', Table 't' <FORM> or F3 ... Terminate programming <ESC> or F4 <START> , <STOP> or F1 Start / stop cyclic measuring see 9.3.2 Output from memory to the printer or to the computer Function To select free memory press PROG . Output memory see 10.2.6 < PRINT> or F3 < CMEM > Clear the memory see 10.2.6

# 6. POWER SUPPLY

Power can be supplied to the measuring instrument in any of the following ways:

Mains adapter 12 V / 3A Electrically isolated power supply cable, 10 to 30 VDC, 1.25 A ZB 1212-NA6 ZB 3090-UK2 ES 5690-AP

Rechargeable battery module, NiMH 9.6 V / 1600 mAh See product overview, Annex 14 and the following chapters.

# 6.1 Mains operation

To power the device from the mains use the mains adapter provided, 12 V / 3A (ZB 1212-NA6). Thus must be connected to the DC socket (5e) and locked by twisting to the right.

If necessary the device can be grounded via the bare socket (5f) (e.g. protect-ive ground connector).

# 6.2 External DC voltage supply

The **DC** socket (5e) can also be used to connect another DC voltage, 10 to 13 V (minimum 200 mA). For this connection use a cable with 2 banana plugs (ZB 5090-EK). If, however, the power supply has to be electrically isolated from the transducers or if a larger input voltage range (10 to 30 V) is required, then an electrically isolated supply cable must be used, either ZB 3090-UK or, for the rechargeable battery module, ZB 3090-UK2. It will then be possible to use the measuring instrument in a 12-volt or 24-volt on-board supply system.

**6.3 Operation with rechargeable battery** (only with ES5690-AP) For mains-independent operation the system must be equipped with module AP (10) with eight NiMH rechargeable batteries (9.6 V / 1600 mAh). With passive selector switch boards and at a current consumption of approx. 40 mA this will give an operating time of approx. 40 hours. With active selector switch boards current consumption increases by 30 mA; operation with a rechargeable battery then only makes sense in the event of power failure. To prolong the operating time for the purposes of long-term recording the device can be left in SLEEP mode; (see 10.2.5). The operating voltage can be checked in the menu " Power supply" (see 10.7); this gives you a basis for estimating the remaining operating time. When the remaining battery capacity drops to approx. 10%, the **CO** symbol in the status bar of the display will start flashing: as soon as this happens the batteries must be recharged. If the batteries are completely discharged the device will switch off to avoid the risk of critically low discharge. The measured data and time-of-day will, however, be retained; see 6.6. The NiMH rechargeable batteries can in fact be recharged at any time and in any charge status using the intelligent charge circuitry. To charge the batteries the mains adapter ZB 1212-NA6 (12 V / 2 Å) must be connected to socket DC-A (10j). The LED "CHARGE" (10i) should then light up indicating that the batteries are being recharged. After approx. 3.5 hours the batteries should be fully recharged and the LED goes out again. After a certain period the batteries are then recharged again; the charge circuitry then switches over to trickle charge. The mains adapter can thus be left permanently connected to the measuring instrument in buffer mode without risk of overcharging the batteries. If you prefer not to recharge the batteries at the moment, e.g. to prevent the device from warming up during thermocouple measurement, you can connect the mains unit to the **DC** socket (5e).



If you intend to replace the rechargeable batteries yourself please be absolutely sure that you change all of them and that the new batteries provide the same capacity; failure to heed this advice may cause high-speed charging to malfunction and the batteries may be damaged.

# 6.4 Sensor supply

At the terminals + (plus) and – (minus) in the ALMEMO<sup>®</sup> connector there is, for mains operation, a sensor supply voltage available, approx. 12 V (maximum 400 mA / plug-in module) (self-healing fuse 500 mA); the total current requirement (device, sensors, output modules) is limited to approx. 1 A. During battery operation the battery voltage is available, 9 to 11 V. Other voltages (12, 15, or 24 V or references for a potentiometer and strain gauge) can be obtained using special connectors; (see Manual 4.2.5 and 4.2.6).

# 6.5 Switching ON / OFF, reinitialization

To switch the device **ON** press the **ON - PROG** key (3); if all is in order the "**ON**" LED lights up.

To switch the device **OFF** press the **ON - PROG** key and hold down for approx. 1 second. After the device is switched off the real-time clock continues to run and all saved values and settings are retained intact; (see 6.6).

If the device behaves abnormally as the result of interference (e.g. electrostatic or mains failure), you are advised to try clearing the problem first of all by simply reinitializing, i.e. switching off and then on again.

If this does not help then you can reinitialize the device. You can activate this **reset** by pressing key **F1** when switching on. You can restore all device programming (including times, device designation, user menus, etc.) to the factory default settings by pressing key **F4** when switching on. Only the programming of the sensors in the ALMEMO <sup>®</sup> connectors remains unaffected.

# 6.6 Data buffering

The sensor's programming is stored in the EEPROM on the sensor connector and the device's calibration and programmed parameters are stored in the EEP-ROM on the instrument itself, both on a fail-safe basis. The data in the standard RAM and the date and time-of-day are buffered by a dedicated lithium battery; all

#### 6. Power supply

this data is retained intact for years - even when the device is switched off and even in the absence of charged batteries. In the event of the lithium battery starting to weaken this will be indicated by a flashing ALARM LED. This still leaves enough time to read out and save the data stored in the memory. The plug-in CPU module can then be pulled out and the lithium battery replaced by a new one. If you have the option with the non-volatile FeRAM or you use the memory connector with the multimedia card then there is no risk of data being lost.

# 7. CONNECTING THE SENSORS / TRANSDUCERS

The **measuring inputs** are implemented by means of various passive and active selector switch boards with 10 inputs each; these are switched by photovoltaic relays; 7.37.3). The number of plug-in modules is only limited by the size of the housing and the number of available slots; however, the maximum number of channels is around 250. At over 100 measuring channels (requires option XU or XM) the system behaves like 3 devices with addresses as follows. To program and scan measuring points each hundreds group must be addressed with the device address and measuring point number. If only **passive selector switch boards** are being used, all measured values are acquired one after the other by the CPU measuring circuit; the time taken for a measuring point scan increases in proportion to the total number of active measuring channels. To determine the scan time more exactly one special measuring operation and where thermocouples are involved up to 2 cold junction compensation measurements / board are required.

A higher measuring rate of up to 220 mops can be obtained by means of active selector switch boards with integrated measuring circuit (requires option M); these - all simultaneously - acquire their measuring points themselves and are then quickly scanned by the CPU via the bus (requires option XM). The scanning rate is stipulated by the board with the most measuring points. It is advisable therefore to have the measuring channels distributed as evenly as possible over all selector switch boards.



At this higher measuring rate sensor presence is no longer checked during the measuring operation. Sensors must not be added or removed therefore during the measuring operation.

# 7.1 Sensor / transducer

At the ALMEMO<sup>®</sup> input sockets on the plug-in ALMEMO<sup>®</sup> modules, types U-A10 or M-A10 (2), any ALMEMO<sup>®</sup> sensor can simply be plugged in. The AL-MEMO<sup>®</sup> Manual includes detailed descriptions of the comprehensive range of ALMEMO<sup>®</sup> sensors (see Manual, Chapter 3) and of how to connect your own existing sensors to ALMEMO<sup>®</sup> instruments (see Manual, Chapter 4). All standard sensors with an ALMEMO<sup>®</sup> connector usually have the measuring range and units already programmed and can thus be connected to any input socket without further adjustment. A mechanical coding system ensures that sensors and output modules can only be connected to the correct sockets. All AL-MEMO<sup>®</sup> connectors incorporate two snap-lock levers; these snap into position as soon as the connector is inserted into the socket, thus preventing unintended disconnection if the cable is accidentally pulled. To withdraw the connector, both these levers must be pressed in at the sides. To connect your own existing sensors you simply need the appropriate ALMEMO<sup>®</sup> connector.

# 7.2 Measuring inputs and additional channels

A selector switch module usually incorporates 10 inputs (6g) to which initially measuring channels M0 to M9 are allocated. However, each such input can if necessary provide up to 4 channels; 10 such inputs can thus provide a total of 40 channels. The additional channels can be used in particular with ALMEMO<sup>®</sup> humidity sensors for 4 measurable variables (temperature / humidity / dew point / mixture ratio) or for function channels. Each sensor can if necessary be programmed with several measuring ranges or scaling settings; and 2 or 3 sensors, if pin assignment so permits, can be combined at just one connector (e.g. RH / NTC, mV / V, mA / V, etc.) but these will not be electrically isolated. The additional measuring channel numbers per connector go up in steps of 10 (e.g. the first sensor has channels M0, M10, M20, M30, the second sensor has channels M1, M11, M21, M31 etc.).

On the 1st selector switch board this gives the following channel assignment :



# 7.3 Selector switch boards

The **CPU measuring circuit board CPU** (1) manages all the selector switch boards and the data of all the measuring channels. The numbers of sensors and channels of each module can be adapted to individual requirements by configuring the measuring point numbering and thus the channel number of the modules by means of a code switch (2i) in the plug-in module. This code switch defines the measuring point number of the first measuring point of each module and thus also the number of channels of the previous module. The 1st plug-in module always begins at 0 (zero). The measuring point number of the next module - logically - must be set between 10 and 40 measuring points higher than the previous module and accordingly the number of channels of

ALMEMO<sup>®</sup> 5690-2CPU 19

### Connecting the sensors / transducers

the previous module will be limited to 10 to 40 measuring points Multi-channel sensors should therefore be collected as far as possible in one module. At over 100 channels the measuring point numbering starts all over again with M00; the hundreds group is determined automatically from the overall order.

- 1. Each selector switch board U-A10 (6) provides 10 electrically isolated ALMEMO<sup>®</sup> inputs for all ALMEMO<sup>®</sup> sensors. In the housing each module occupies 2 plug-in slots. For the purposes of thermocouple measurement each module is equipped with 2 cold junction sensors whose values are interpolated for each measuring point. If thermocouples are involved the measuring time for this will affect the total sampling rate.
- Selector switch board U-MU (7) has 10 inputs led out to a 64-contact 2 socket strip. Sensors are connected via a 10x connector (ZA 5690-MU) each with 4 screw terminals A, B, C, D - in the same way as any standard ALMEMO<sup>®</sup> connector: (see Manual 4.1). Sensors requiring a power supply or an ALMEMO® connector with special interface circuitry (e.g. humidity sensors, rotating vanes, etc.) cannot be connected in this way. The new connector ZA 5690-MU with a larger EEPROM now permits 4 channels per sensor, i.e. 40 channels altogether; on the old connector ZA 5590-MU there are only 10 channels available. Measuring point numbering, however, is as described above, namely by means of code switches internally on the board. For this purpose the module must be withdrawn and the number on the switch multiplied by 10 (4 = measuring point 40). Each sensor can be programmed individually but all sensor programming data is saved together in a shared EEPROM located in the connector. A cold junction sensor is also provided for thermocouples.

АВО

ав с d 2

ав с д З

<u>ср</u>4

ΑВ

СD <sup>A B</sup> 1

CD

3. Selector switch board U-KS (8) also has 10 inputs; these are led directly onto two 20-contact plug connectors with terminals. Sensors can be connected via terminals A, B, C, D, with the usual wiring arrangement; (see label on the side of the connector, example on the right). In order to feed in the wires the outside connectors must be opened by inserting a narrow screw-driver in the inside holes. These boards are also available with shunts for 20-mA signals (terminals A and B for units "mA" or "%") and with dividers for 10-V signals (terminals A and C for units "mV 2"). A

module is only suitable for thermocouples if these are connected using copper wires via an isothermal block with integrated cold junction sensors; (see Manual 6.7.3). Automatic sensor recognition is not possible with this plug-in module; the sensor data is saved to an EEPROM on the board and must be programmed depending on sensor type e.g. using the AMR-Control software. In the newest version (5.13) this several sensors can be programmed at the same time. Measuring point numbering is by means of the code switch internally on the board (see above). This module, similarly, occupies 1 plug-in slot only.

4. Selector switch board U-TH (9) has 10 inputs for thermocouples with

miniature thermal connectors. The sensor data is saved to an EEPROM on the board; this means that individual programming is required; (see above). This module occupies only 1 plug-in slot but if arranged in a series a dummy panel must be inserted between in order to operate the connectors. Measuring point numbering is by means of the code switch internally on the board (see above).

5. Active selector switch boards M-A10, M-MU, M-TH, M-KS with integrated measuring circuit (all option M) can be scanned more rapidly (up to 220 mops); otherwise they have the same characteristics as passive selector switch boards.

# 7.4 Potential separation

When organizing a properly functioning measuring setup it is very important to ensure that no equalizing current can flow between sensors, power supply, and peripherals. This will be the case so long as all points lie at the same potential or any unequal potentials are electrically isolated.



The analog inputs are electrically isolated from one another by means of photovoltaic relays. A new feature on this device is the <u>additional separation</u> of the measuring inputs from the CPU and power supply. Between all inputs and outputs (even the analog output cables which are not electrically isolated) the maximum potential difference permitted is 50 V. The voltage at the measuring inputs themselves must not exceed 12 V (between B, C, D, and A).

However, some components are not electrically isolated, namely all sensors connected to the common internal power supply  $\pm U$ . If a sensor of this type has no connection to pin A, it must be electrically isolated by means of relay S (see above) or even be bridged by a wire jumper because otherwise the inputs would have no reference potential. The relay is set automatically by means of element flag 5 "ISO OFF" the first time it is connected; (see Manual 6.10.3). However, with certain connectors (especially divider connectors without power supply) element flag 5 should be checked and if necessary corrected. Sensors with their own integrated power supply must themselves be isolated or the device must be operated with an electrically isolated power supply (mains adapter or connecting cable ZB 3090-UK2 with DC/DC converter). Data and trigger cables are also isolated by means of optocouplers.

# 8. DISPLAY AND KEYPAD

# 8.1 Display and menu selection

In the graphics display (1) three selection menus are available :

**1.Measuring menus** see 9. There are 9 measuring menus; these list the measuring and function values in various ways. There are 3 user menus (U1, U2, and U3); these can be freely configured by the user (see 9.7).

**2.Programming menus** see 10. Here you can program the settings needed on the device and on the sensors and the process control for the data logger.

**3.Wizards** These will help when it comes to programming and measuring for special applications.

| * ALMEMO 5690-2                                                                                                                                                                                                                      | *                                                                  |                                                                                                                                                                                                                                  |                                                                     |                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEASURING menus<br>Standard display                                                                                                                                                                                                  | *                                                                  | ALMEMO 5690-2                                                                                                                                                                                                                    | *                                                                   |                                                                                                                                                                                                                                                                         |
| UI Meas, value correction<br>U2 Average value<br>U3 Volume<br>Data logger<br>Multi-channel display<br>*Measuring Points list<br>Bar chart<br>Line graph<br>Menu 1 - WIZARD menus<br>Menu 2 - PROGRAMMING me<br>P-OFF *ON F MENUI MEN | PRC<br>Tim<br>Refo<br>Men<br>Ser<br>Si<br>Dev<br>Out<br>Pou<br>Loc | JGRAMMING menus<br>e cycles<br>fording to memory<br>nory output<br>isor Programming<br>Pecial functions<br>fuce configuration<br>tput modules<br>ver supply<br>eking, calibration<br>u 1 - MEASURING menus<br>u 2 - MIZOPD menus | *<br>WI:<br>Sta<br>CO<br>Fui<br>Sca<br>2-1<br>Lim<br>An<br>Th<br>We | ALMEMO 5690-2 *<br>ZARD menus<br>art / stop<br>erage value<br>arage value<br>arage value<br>arage value<br>arage value<br>but<br>notion channels<br>aling<br>point sensor adjustment<br>it value, alarm<br>alog output<br>ermal coefficient<br>t bulb globe temPerature |
|                                                                                                                                                                                                                                      | P-0                                                                | FF *ON F MENUI MEN                                                                                                                                                                                                               | Men<br>Men                                                          | u 1 -PROGRAMMING menus<br>u 2 -MEASURING menus                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                      |                                                                    |                                                                                                                                                                                                                                  | P-C                                                                 | FF *ON F MENU1 MENU2                                                                                                                                                                                                                                                    |

To display menu selection press

To select desired menu selection press

Display illumination can be switched on in 3 levels; (10.5.5)

To switch off the device in the menu selection press

or at any junction press and hold down

To select menus press :

To call up the selected menu press :

To return to the measuring menu last used press

To return to the programming menu last used press

To return to menu selection press

<ESC>
</ENU1> or </ENU2>
</#ON> ...
</P-OFF>
ON

or PROG

again.

J

You can program the device designation in the header line (see 10.5.1) and the titles of the user menus (see 9.7).

22 ALMEMO® 5690-2CPU

# 8.2 Status symbols in the display and status LEDs

Checking the device status Continuous measuring point scan Measuring operation stopped or started Measuring point scan started with data saving Measuring point scan started with data output via interface Start time or end time of measuring operation programmed Status of the relays (external output module) open / closed Keypad operation restricted by locking Display illumination activated or on pause Battery charge status : full / half / empty

#### Symbols indicating the measured value status (see above)

No sensor, measuring point deactivated Measured value modified with sensor correction or scaling Averaging in progress Output function **D**iff, **H**i, Lo, **M**(t), **A**larm (see 10.4.5): Compensation **C**: **T** Temperature, **P** Pressure, . continuous Limit value exceeded, maximum or minimum Overshooting the measuring range Display for maximum value Undershooting the measuring range Display for minimum value Sensor breakage / sensor voltage Lo : Display '----'

## 8.3 Function keys

The function of keys **F** to **F** (3) may differ per menu. This function is indicated as an abbreviation in the bottom line of the display (softkeys). In the instructions and documentation these softkey abbreviations are shown in angle brackets, e.g. **<**START>.

Various status symbols are displayed next to the measured value; (see below).

In the **standard disPlay** (shown on the right) the following keys are available :

Measuring point selection by means of cursor keys (3) (M in the middle)

- To start a cyclic measuring operation
- To stop a cyclic measuring operation

Once-only manual output / storage of all measured values

- To output the menu functions via the interface
- To return to menu selection

|                        | •           |
|------------------------|-------------|
| <u>Status bar</u>      | <u>LEDs</u> |
| C                      |             |
| ii or 🕨                | START       |
| REC                    | REC         |
| COM                    | СОМ         |
| iþ / þi                |             |
| <b>R</b> or <b>R01</b> |             |
|                        | LOCKED      |
| * or *                 |             |
| -                      |             |

•. IID . IID







# 8.4 Function selection

Each menu comprises a number of functions; these may have to be activated or programmed during operation.

Help window for selecting functions:

Set measured value to zero Press ZERO Sensor adjustment with zero-Point (9ain) Press ADJ



<PRINT>

<CMEM>

### Selection of functions ,

The first changeable parameter is highlighted in inverse **28.67** font on a black background.

A character should appear in middle of the soft-key bar **F** - as verification

To jump forward to the next function press

Depending on function the keys **F** to **F** 

are assigned the desired meaning, e.g. <u>Clear maximum</u> <<u>CLEAR></u> Set measured value to zero Adjust measured value <<u><</u><u>ZERO></u> / <u><ADJ></u> PROG

Set measured value to zero Adjust measured value <u>Output memory</u>

Clear memory

# 8.5 Data entry

If a programmable parameter is selected (see 8.4) you can enter or clear the value.

### Clearing programmable values

To program press

You should now be in programming mode

The cursor blinks below the first input position.

**Increment** the selected digit by pressing **Decrement** the selected digit by pressing

Change arithmetic sign of numeric values Select next position

The cursor blinks below the second digit. To move back to the previous digit, press Each position is programmed like the first. To complete data input To cancel programming



# 9. MEASURING WITH THE MEASURING MENUS

When the device is switched on for the first time it displays the menu **Measuring Points list** (see 9.5.3). This provides a clear overview of the whole measuring system. Here you can check whether the date and time-of-day are correctly set. If they are not you can enter the correct values now; (see 8.4 and 8.5). You are also shown a continuous display of the measured values for all connected sensors and measuring channels. You can also, by



means of cursor keys or or or even assign other additional functions such as designation, range, maximum value, and limit values. If you program the cycle timer (see 9.3.2), you can, by pressing **START**, start the first measuring operation and record measured values cyclically. If a printer or a terminal is connected then all values can also be output online. Having selected the channels you can then program the measuring points. To select other measured value menus press **SEC**.

#### Menu selection

To ensure that measured values and the associated functional values are acquired and displayed in your application in the clearest possible way the 5690-2 system incorporates a series of preconfigured measuring menus. These can be selected from the range of **measuring menus**; they differ from one another in the number of measuring points (1 to 20), in the font size used to display measured values (4, 8, 12 mm), in the choice of bar chart or line graph, and in the grouping of functions. If these preconfigured menus do not completely meet your requirements, you can assemble your own \* ALMEMO 5690-2 \* MEASURING menus Standard dis2ay U1 Meas value correction U2 Average value U3 Volume Data logger Multi-channel disPlay \*Measuring Points list Bar chart Line graph Menu 1 WIZARD menus Menu 2 PROGRAMMING menus P=OFF \*\*ON F MENUI MENU2

3 user menus (U1, U2, U3) from a range of over 50 functions; (see 9.7).

To activate menu selection press

To select a menu press

To call up the selected menu press :

The most important functions for controlling the measuring sequence are already included in and can also be directly programmed in the measuring menus. The system also provides special **PROGRAMMING menus** for the purposes of programming the sensors and the device and **WIZARD menus** for particular functions.

These can be selected by pressing



<MENU1> or <MENU2> .

# 9.1 Measuring with a measuring point

### Standard display

The menu Standard disPlay shows a measuring point in the largest size with (maximum 3) digits) measuring point, designation, and units. Symbols indicate the status of the measured value; (see 8.2). The maximum and minimum functions are described in Section 9.1.2. the cycle timer in Section 9.3.2, and saving to memory in Section 9.3.3.



# 9.1.1 Selecting a measuring point

By pressing **A** you can select one after the other all active measuring points and have the current measured value displayed for each (M) in the middle of the softkey bar). By pressing vou can move back to the previous channel. When a particular measuring channel is selected the associated input channel is also selected at the same time.

The measuring channel can be incremented by 1 by and by 10 by pressing and holdbriefly pressing the key

The measuring channel can be decremented by 1 by briefly pressing the key

## 9.1.2 Peak value memory with date and time-of-day

The highest and lowest values are identified from the acquired measured values for each measuring point and continuously updated to memory together with date and time-of-day. To display these values use the functions listed below: to output them use the function channels; (see 10.3.10).

In the AMR-Control software the Monitoring menu including the maximum / minimum times (as shown on the right) can be loaded and easily configured as a user menu (see 9.7).

Function, maximum value

Function, minimum value

Function Date and time-of-day of maximum value : Function Date and time-of-day of maximum value : To clear memory select the function (see 8.4):



and by 10 by pressing and hold-

ing it down.

ina it down.

| Maximum value | 245.7 °C     |
|---------------|--------------|
| Minimum value | 224.1 °C     |
| Max time :    | 12:34 01.02. |
| Min time :    | 12:56 01.02. |
| Maximum value | 245.7 °C     |

26 ALMEMO<sup>®</sup> 5690-2CPU

<CLEAR>

To clear each individual value press

To clear maximum, minimum, and average values for all <CLRA> channels press

As soon as you clear the memory, the current measured value will appear (because measuring is continuous). Each time a measuring operation starts, if the device has been so configured, the peak values will be cleared ; (for default setting see 10.5.8). Cyclic clearing can be activated by programming the averaging mode CYCL: (see 9.4.7).

# 9.2 Measured value correction and compensation

To achieve maximum measuring accuracy the zero-point of the sensors can be corrected in all menus at the touch of a button. More correction functions are provided in the user menu U1 Measured value correction (selection, see 8.1). By entering a setpoint the correction value will be automatically calculated and stored in the sensor connector. For sensors affected by ambient temperature or atmospheric pressure the appropriate compensation can then be provided.

## 9.2.1 Set measured value to zero

One very useful function is to zero the measured value at certain locations or at certain times as a reference value in order then to observe only the subsequent deviations. Having selected the measured values function in any menu (see 8.4) you will be shown a help window listing all the possibilities for measured value correction. If you press <ZERO>, PROG, the displayed measured value will be saved as **base value** and thus set to zero.

To select the **measured value** function press To zero the measured value function :

To execute press Measured value Base value

If the function is locked (see 10.3.4), the base value is not saved on the connector but only temporarily to RAM where it is retained until the device is next switched off. This function can be blocked by using locking level 6.

> Whenever the display indicates a deviation from the base value (instead of the actual measured value) the symbol *r* will appear.

> To obtain the actual measured value again the base value must be cleared; (see 10.3.6).



C > REC COM |> > RO1 \*



23.4 °C

Zero-set temPorarily by means of key PROG

Sensor is locked.

Cancel by Pressing ESC



## 9.2.2 Zero-point adjustment

Many types of sensor need to be adjusted at least once or at regular intervals to compensate for various instabilities. This can be done with the above-mentioned 'Set measured value to zero' - but also with the special **zero-point adjustment**, which does not influence scaling. If this function is used, the zero-point error is not stored as base value but as **zero-point correction**; (10.3.7).

To select the **measured value** function press Function **Zero-point adjustment** by means of key

> To execute press Measured value Zero point

If the function is locked at level 3 or above (see ), a help box states that it can only be unlocked temporarily for adjustment purposes; this ensures that the correction values are remain permanently stored on the connector.

To adjust temporarily unlock by pressing



Sensor is locked. To adjust temPorarily unlock by Pressing FREE

Cancel by Pressing ESC





If a base value has been programmed, the measured value indicated after adjustment is not zero but the negative base value.

In the case of **dynamic pressure probes** the zero-point error is always written to the calibration offset temporarily (i.e. until you switch off) even if the channel is locked.

# 9.2.3 Sensor adjustment for chemical sensors and probes

With the following sensors in the measured value function press <ADJ> (9.2.2) to automatically reach the **sensor adjustment** wizard for **two-point adjustment** of the zero-point and **gain**. The appropriate calibration setpoints should already be entered but these can also be modified.

| Probe                                       | Туре                                            | Zero point                  | Gain         | 2POINT SENSOR ADJUSTMENT                                                   |
|---------------------------------------------|-------------------------------------------------|-----------------------------|--------------|----------------------------------------------------------------------------|
| pH probe:                                   | ZA 9610-AKY:                                    | 7.00                        | 4.00 pH or   | PH Probe                                                                   |
|                                             |                                                 |                             | 10.00 pH     | Select meas channel                                                        |
| Conductivity:                               | FY A641-LF:                                     | 0.0                         | 2.77mS/cm    | 01: 7.23 PH PH value                                                       |
|                                             | FY A641-LF2:                                    | 0.0                         | 147.0uS/cm   | Atm Pressure 1013. mbar                                                    |
|                                             | FY A641-LF3:                                    | 0.0                         | 111.8mS/cm   | Zero Point                                                                 |
| O <sub>2</sub> saturation                   | FY A640-O2:                                     | 0                           | 101 %        | SetPoint 1: 7.00 PH<br>01: 7.00 PH PH value                                |
| Temperature<br>be entered h<br>purposes (se | and atmosph<br>here if necest<br>e 9.2.5. 9.2.6 | neric pressu<br>sary for co | ure can also | Gain<br>SetPoint 2: 10.00 PH<br>01: 10.00 PH PH value<br>Gain error 10.8 % |
|                                             | 0 0.2.0, 0.2.0                                  | <i>,</i> .                  |              | CLEHK HUJ M ESC                                                            |





If sensors are locked they can be temporarily unlocked by pressing **EXAMPLE** A Locking at level 6 permits adjustment only and thus prevents operating errors by pressing <ZERO>.

### 9.2.4 Two-point adjustment by entering setpoint

In menu U1 Measured value correction two-point adjustment can also be performed for other sensors. In addition to zero-point adjustment9.2.2 gain is also corrected in the SetPoint function by means of a second measuring point. The correction factor is calculated automatically at the touch of a button and stored as factor on the sensor connector.

### 1. Zero-point adjustment

Put sensor in its zero status (icv water, unpressurized, etc.) Set measured value to zero (see 9.2.2) by pressing <ZERO> / <ADJ>, PROG.

2. Final value correction

Adjust sensor to a defined **setpoint** (boiling water, known weight, etc.)

Setpoint entered in function 'Setpoint'

The measured value shown should

tivate calibration resistance (see Manual 3.6.2)

Measured value adjusted in function 'Setpoint'

00: 098.7 °C

With ALMEMO force transducers activate / deac-<0N> / <0FF>

| SetPoint    | 100.0 °C |  |
|-------------|----------|--|
| <adj></adj> |          |  |
| 00: 100.0   | °C       |  |

then be the setpoint.

If the sensor is locked at level 4 the correction factor is programmed as 'Factor'; if the sensor is locked at level <= 3 or temporarily unlocked by pressing <FREE>, the correction factor is programmed as gain correction (see 10.3.7).

### 9.2.5 Temperature compensation

Sensors whose measured values depend heavily on the temperature of the measuring medium usually incorporate their own temperature sensor and perform temperature compensation automatically; (see 10.3.9 Measuring range list 'with TC'). However, dynamic pressure probes and pH probes are also available without their own temperature sensor. If the temperature of the medium deviates from 25°C the following measuring errors must be considered :

| e.g. errors per 10 °C |              | Compensation range | Sensor       |  |
|-----------------------|--------------|--------------------|--------------|--|
| Dynamic pressure      | approx. 1.6% | -50 to +700 °C     | NiCr-Ni      |  |
| pH probe              | approx. 3.3% | 0 to 100           | NTC or Pt100 |  |

Compensation at constant temperature can be activated via the **'TemPerature** compensation' function, e.g. in the **'Measured value correction'** menu.

Enter the compensation temperature in the function **TemPerature comPensa**+ tion CT 31.2°C

**Continuous temperature compensation** using external temperature sensors can be activated either via the reference channel of the sensor to be compensated or by configuring any temperature sensor as reference by means of a '\*T' in the designation.

While the temperature is being measured, point T flashes. **TemPerature comPensation CT. 23.5°C** 

Automatic temperature compensation can be switched off by programming the reference channel for the measuring point to itself.

### 9.2.6 Atmospheric pressure compensation

Some me measured variables depend on the ambient atmospheric pressure (see 10.3.9 Measuring range list 'with PC') with the effect that large deviations from normal pressure (1013 mbar) may lead to measuring errors.

### e.g. error per 100 mbar

Compensation range

|                                 |              | e empeneauen range            |
|---------------------------------|--------------|-------------------------------|
| Relative humidity psychrometers | approx. 2%   | 500 to 1500 mbar              |
| Mixture ratio, capacitive       | approx. 10 % | Vapor pressure VP up to 8 bar |
| Dynamic pressure                | approx. 5%   | 800 to 1250 mbar (error < 2%) |
| O <sub>2</sub> saturation       | approx. 10%  | 500 to 1500 mbar              |
|                                 |              |                               |

It is advisable therefore, especially when taking measurements at appreciable heights above sea level to take due account of the atmospheric pressure (approx. -11 mbar / 100 meters above mean sea level, MSL). This can be programmed (see 10.5.6) or it can be measured using a suitable sensor (reference sensor with designation '\*P'), (see 10.3.2, Manual 6.7.2).

The function **AtmosPheric Pressure** can be integrated into any user menu or be set in the standard menu **Device Configuration**.

Enter atmospheric pressure in the function Atmospheric pressure **AtmosPher+** ic **Pressure CP. 1013. mbar** 

The atmospheric pressure is set to 1013 mbar with each reset. It can be set to the current value by means of the usual data entry process; (see 8.5). If atmospheric pressure is being used for compensation in a measuring menu the symbol '**CP**' is displayed; if atmospheric pressure is itself being measured the measured value is displayed and a dot flashes after '**CP**'.



Please note that as soon as a reference sensor is disconnected normal pressure, 1013 mbar, is used.

### 9.2.7 Cold junction compensation

Cold junction compensation (VK) for thermocouples is normally performed completely automatically. On this device, with 9 sockets, to ensure the highest possible degree of accuracy - even in difficult thermal conditions (e.g. thermal irradiation) - the socket temperatures are acquired by means of two precision NTC sensors in measuring sockets M0 and M8 and then calculated by linear interpolation. The mean cold junction temperature is displayed in the device configuration as an operating parameter (see 10.5.8). This can if necessary be incorporated in measured data acquisition as device temperature with function channel 'CJ' (see 10.3.10).

Instead of this form of cold junction temperature measurement it is also possible to use an external measuring sensor (Pt100 or NTC) in an isothermal block (see Manual 6.7.3); this must be positioned upstream from the thermocouples and '\*J' must have been programmed in the first two positions in the designation (see 10.3.2). In this mode the device is switched over automatically to 'continuous measuring point scan'.

For especially exacting requirements (e.g. for thermocouples for which there is no connector with thermo-contacts or for large temperature differences caused by thermal irradiation) special connectors are available, each with its own integrated temperature sensor (ZA-9400-FSx) for cold junction compensation. These can be used for all thermocouple types; however, they require 2 measuring channels. Having "#J" programmed in the first two positions in the designation for the thermocouple ensures that the temperature sensor integrated in the connector is indeed used for cold junction compensation.

# 9.3 Measuring point scan and output

Measuring point scanning is used to acquire measured values from all measuring points either manually at certain times or cyclically over a specified period; these values can be saved on the computer or output to the printer; (see Manual 6.5).

This can be performed e.g. in the **Data logger** menu.

| -                                                                                                    |                                                |
|------------------------------------------------------------------------------------------------------|------------------------------------------------|
| C 🕨 REC COM 🕪 🖬 R01 \star 🚥                                                                          |                                                |
| Time: 12:34:56 Date: 01.01.04<br>Cycle timer 00:00:30 nS<br>Memory free 508.3 kB<br>Number: 01-001 A |                                                |
| 01: 2                                                                                                | 244.5 °C                                       |
| NiCr temPerature                                                                                     |                                                |
| Limit maximum<br>Maximum value<br>Limit minimum<br>Minimum value                                     | 250.0 °C<br>245.7 °C<br>230.0 °C<br>▼ 224.1 °C |
| START MANU M PRINT ESC                                                                               |                                                |

# 9.3.1 Once-only output / saving of all measuring points

Once-only manual measuring point scans for acquiring the current measured values from all active measuring points (see Manual 6.5.1.1) can be initiated by pressing  $\leq$ MANU> . If the time-of-day is required in the display, it must first be set (10.1.1). The output format can be set in the **Cycle timer** function (9.3.2).

### Once-only manual measuring point scan :

The following symbols will be displayed briefly - as verification - in the **status bar**. The start arrow will light up briefly and then go out again

If data is being output via the interface the following symbol will light up

If measured values are being saved (see 10.1.2) the following will appear

TCOMT.

Ύ) F

<manu>

Each time the key is pressed again after this the measured values will be processed with the associated measuring time.

# 9.3.2 Cyclic output / saving of all measuring points

For cyclic recording and output of measured values (see Manual 6.5.1.2) the cycle and the output format must be programmed accordingly. The measuring operation can be started using the key **START** and stopped using the key **STOP**. Each time a measuring operation starts, if the device has been so configured, the maximum, minimum, and average values of all measuring points will be cleared (for default setting see 10.5.8).

So long as no measuring operation has been started the **Cycle timer** function displays the cycle. Once the function has been selected (see 8.4) the cycle can be entered directly (see 8.5). Once started the timer counts down to the next cycle.

### Function Cycle timer :

### Cycle timer 00:02:00 S

Cycle (hh:mm:ss), Saving ON, List format

The quickest way to set the required output format is by pressing <FORM>; (for printouts see Manual 6.6.1).

Change format Format, adjacent columns 'n': Change format Format, table 't': <FORM> Cycle timer 00:02:00 Sn <FORM> Cycle timer 00:02:00 St <START>

'REC '

<STOP>

Memory free DB76343 kB

<PRINT>

<CMEM>

**'**||'

### To start cyclic measuring point scan press

In the **status bar** - as verification - the following symbols will be displayed continuously, i.e. so long as the measuring operation is running. The start arrow lights up If data is being output via the interface the following symbol will light up **COM**<sup>'</sup>.

If measured values are being saved (see 10.1.2) the following will appear

To stop a cyclic measuring point scan press

### 9.3.3 Memory capacity, Memory output, clearing the memory

When measured values are being recorded the **Memory caPacity free** function continuously displays the memory capacity still available. Selecting this function enables two softkeys, one for direct memory output and one for memory clearing. The output format is as set in the cycle (see 9.3.2 and 10.1.2).

Function Memory caPacity free e.g.

To output the memory (see 10.2.6) : Clear the memory

### 9.3.4 Output menu functions

Each measured value menu, together with all its displayed functions, can be output via the interface to a printer or computer; (for connection of peripheral devices, see Manual 5.2). If you have selected the standard display, pressing the key **PRINTS** will initiate a printout of the following protocol.

Print measured value menu

### PRINT>

Measuring point, measured value, designation 01: +0023.5 °C temperature Maximum value 01:+0020.0 °C Minimum value 01:-0010.0 °C Print timer 00:01:23 Memory capacity - total / free in KB MEMORY S0512.1 F0324.4 A

The protocols for individual functions is listed in Section 6.6.1.

### 9.3.5 Displaying measured values as a line graph

In the **Line graph** menu the measured value of the selected channel is displayed, as soon as a measuring operation starts, as a line graph with 100 x 120 pixels. The curve is continuously updated from right to left according to the time resolution defined by the **cycle**; each scan affects one pixel. The resulting time data for the whole t axis is displayed as (days) hours : minutes in the bottom right corner. In the top right corner the time-of-day is displayed. The curve is updated throughout the active measuring operation - even if the user leaves the menu (so long as the selected measuring point is not changed).



Limit values, if activated, are displayed as dotted lines.

To set the display range in the y-axis the functions **Analog start** and **Analog end** in the **Special functions** menu should be used; (see 10.4.4). These functions can also be entered directly on the axis by pressing **PROG**.

Displaying a measured value as line graph Cycle : 00:00:05 In menu Times - cycles enter cycle. 00:10Time axis  $120 \times 5 \text{ secs} = 10 \text{ mins}$ : To select the measuring channel press l or PROG To scale the v axis press 40.0 %H Analog end at top Change value (see 8.5) by pressing PROG / >... 20.0 28 Analog start at bottom, ditto To terminate the input <ESC> To start a measuring operation <START> To stop a measuring operation <STOP > ίľ,

F

During a measuring operation the channel switching function is blocked.

Each time a measuring operation starts and each time the channel is switched the line graph will be cleared.

# 9.4 Averaging

The average value for a measured value is needed for various applications.

e.g. Smoothing a widely fluctuating measured value (e.g. wind, pressure, etc.) Average flow velocity in a ventilation channel

Hourly or daily average values for weather data (temperature, wind, etc.) Also for consumption values (electric current, water, gas, etc.)

The average value  $\overline{M}$  for a measured variable is obtained by totaling a whole series of measured values  $M_i$  and then dividing by the number of measured values N.

Average value  $\overline{M} = (\sum_{i} M_{i})/N$ 

The ALMEMO 5690-2C offers several different averaging modes.

These include measured value smoothing for the selected channel with a sliding averaging window, averaging over individual measuring operations selected by place or time (also networked measuring as per VDE), averaging over the full measuring time, over cycles, or over specified measuring points.

For all these modes you can call up the special **Averaging** wizard to help you enter the necessary parameters with help windows that will teach you how best to proceed.

### Measuring menu Average value :

Most averaging functions can also be performed directly in a measuring menu, e.g. 'User menu' **U2 Rverage value**. Help windows explaining the various averaging modes are available in the programming stage, e.g.

> Averaging Continuous Over the whole measuring oPeration by means of key START / STOP Over individual manual measuring oP+ erations by means of key MANU

To calculate volume flow from the average velocity and the cross-section of a flow conduit you can use either the 'User measuring menu' **U3 Volume flow** (see 9.4.9) or the **Volume flow** wizard.





### 9. Measuring with the measuring menus

### 9.4.1 Smoothing meas. values by means of a sliding average

The first method for averaging applies exclusively to the measured value of the displayed channel; it is used to smooth measured values of an unstable or strongly fluctuating nature, e.g. especially turbulent flows, by means of a sliding average over a specified time frame. The level of smoothing can be set in the **Smoothing** function; here you specify the number of measured values to be averaged (possible range 0 to 99). The smoothed measured value will then apply for all subsequent evaluation functions. Smoothing can thus also be used in a combination with averaging over individual measured values (see 9.4.3) or for networked measuring (see 9.4.4).



Measured value smoothing over e.g. 15 values : Smoothing 15 When a large number of measuring points is involved, continuous measuring point scanning should be switched off; the measuring rate might otherwise be substantially reduced. Measuring rate 10 M/s Continuous -

Time constant (s) = smoothing / (measuring rate  $\cdot$  measuring points +1) is calculated and displayed by the averaging wizard.

### 9.4.2 Averaging mode

For a detailed description of averaging over measuring point scans see the Manual 6.7.4.. The averaging method is defined for each channel in the Aver+ aging mode function. Below are the methods available, shown with averaging mode and operation :

Function - no averaging

Averaging mode Averaging over individual measuring operations by MANU or Averaging mode CONT over all measured values from START to STOP:

Averaging over all measured values in a cycle If averaging is in progress - the following symbol lights up

Display of average value in

CYCL М.

Average value 12.34 mis

For recording average values you will need a function channel with range M(t) (see 10.3.9/10) or the corresponding output function M(t) instead of the measured value (see 10.4.5).

### 9.4.3 Averaging over individual manual meas. operations

To obtain the average of individual measuring operations at particular locations or times individual manual measuring point scans Ei must be performed. At all measuring points where measured values are to be averaged averaging must be switched on with 'CONT' mode.


as per VDI/VDE 2640, namely by performing measuring operations at particular networked points in a cross-section vertical to the pipe axis (see Manual 3.5.5). To log all the individual values or to be able to repeat incorrect measuring operations a special menu is provided for networked measuring. This special menu can be accessed via the Average value function by pressing <ARRAY>. This menu can also be used of course for other point measuring operations.

- 1. The averaging mode is not significant.
  - For meas. value smoothing, if necessary, select Smoothing
- 2.Select Average value function :
- 3.To select the networked measuring menu press
- 4.For data acquisition press
- 5.Enter number of points
  - A deleted array appears
- 6.To select a measuring point press
- 7.Start the measuring operation by pressing
- 8.Stop the measuring operation by pressing
- 9.Acquire all points as per steps 6 to 8.
- 10.To delete the array and new measuring operation press
- 11.To return to the measuring menu

| Networked<br>Points 5          | measuring |
|--------------------------------|-----------|
| 01: 11.43 mis<br>02: 12.51 mis |           |
| 03: 19.71 mis<br>01: 12.51 mis |           |
| U5: Mis                        |           |
| Querage value                  | 14.51 mis |
| STOP CLEAR F                   | ESC       |
|                                |           |
| Averaging mod                  | ie        |





<ESC>

## 9.4.5 Averaging over the meas. time or measuring duration

To calculate the average value of all measured values acquired at the measuring rate over a certain period of time the averaging mode for the required measuring channel must be set to 'CONT'. Averaging can be performed either with or without the cycle. A measuring point scan is always performed at startup and stop in order to record the start value and end value each with the applicable time-of-day.  $\overline{M}$  In order to record the average value a function channel M(t) is required; (see 10.3.9, 10.3.10).



# 9.4.6 Measuring time, Measuring duration, Timer

For averaging over time (see above) and for many other measuring operations the actual measuring time, from start to stop, is required. For continuously monitoring the measuring time - without clearing the real time - the Measuring time function is provided; this has the format hh:mm:ss.xx with a resolution of 0.10 seconds. If the function 'Clear measured values at start of measuring operation' is activated in the operating parameters (see 10.5.8) the measuring time will also be cleared automatically at each start-up.

Measuring time function

To clear the meas. time in Meas. time function press

#### Measuring time 00:00:00.00 <CLEAR>

### **Measuring duration**

If you want to stop a measuring operation or an averaging process (see above) after a certain length of time, you can program the measuring duration in the menu **Times – Cycles** (see 10.1.4) or in a user menu; (this function is displayed in the status bar as  $\mathbf{H}$ ).

Measuring duration function Measuring duration 00:00:00



When recording to memory use a programmed measuring duration to ensure that recording does not abort prematurely.

#### Timer as function channel

Measuring times can be output and saved via the function channels 'Time' in the format 'sssss' or 'ssss.s' (see 10.3.9). The 2nd timer with 0.1 seconds resolution can be obtained by programming the exponent to -1. At a count of 60,000 the timer is reset and starts again at 0. All the normal start / stop functions can be used; in addition, the start, stop, output, and zero-setting of the 2nd timer can also be triggered by actions in the event of limit values being exceeded; (see 10.4.3).

# 9.4.7 Averaging over the cycle

To acquire average values at cyclic intervals over cyclic periods the averaging mode 'CYCL' must be used. This ensures that the average value, maximum value, and minimum value are cleared after each cycle but continue to appear in the display throughout the following cycle.



#### Average value over manually set periods of time

Using the same averaging mode but without the cycle the average value can also be obtained over the period of time from one manual measuring point scan to the next measuring point scan.

Set averaging over a cycle

Select the cycle and clear by pressing

Start measuring operation, averaging in progress

Manual measuring point scan

Average value from one meas. point scan to the next :



<mark><MANU></mark> ▶ ... Avera9e value 12.34 ms



For recording average values an additional **function channel** with range M(t) (see 10.3.9, 10.3.10) or the corresponding **output function** M(t) is required - instead of the measured value (see 10.4.5, Manual 6.10.4).

#### 9.4.8 Averaging over measuring points

In all measuring point scans the average value can also be determined over a number of associated measuring points. However, for this average value a

function channel with the measuring range M(n) must be available (see 10.3.9). If you do not wish to program reference channels and the measuring points to be averaged begin with M0, you need simply to program the function channel M(n) to the 2nd channel of the last connector (e.g. M13) (see 10.3.10). This will then refer automatically to the series from reference channel 2 (M0) through to reference channel 1 (M3 = 1st channel). Other ranges of measuring points can be activated by programming the reference channels accordingly (see 10.4.6). The function channel can be configured quickly and easily by means of the **Averaging** wizard.

AVERAGING Over measuring Point range From measuring channel 00: 234.5 °C NiCr To measuring channel 03: 189.7 °C NiCr Function channel Program to channel 13: 213.7 °C M(n) Range M(n)



# 9.4.9 Volume flow measuring

The **volume flow** in flow channels can be calculated by multiplying the average flow velocity and the cross-section area.  $\nabla$  The functions needed for this purpose can be accessed via the user menu U3 **Volume flow** (see right). These are a flow channel with averaging, the functions 'diameter' and 'cross-section', and a function channel for volume flow (10.3.10). If the volume flow channel has not yet been programmed or if other functions are needed, e.g. factor or length and width for rectangular crosssections, you can use the **Volume flow** wiz-



ard. Volume flow Volume flow VF = average flow velocity V • Cross-section area CS

VF = 
$$\nabla$$
 · CS · 0.36 VF = m<sup>3</sup>/h,  $\nabla$  = m/s, CS = cm<sup>2</sup>

 $\overline{V}$  For rough air volume measurements at air vents and gratings the average flow velocity can be determined by means of **time-based averaging** (see 9.4.5 and Manual 3.5.5). You apply the rotating vane at one end, start averaging, and proceed uniformly over the whole cross-section; when you reach the other end of the cross-section stop averaging. Or alternatively the average flow velocity can also be determined by means of **single networked measuring operations** as per VDI/VDE 2640 (see 9.4.4 and Manual 3.5.5) (e.g. 13.24 m/s).

To display, output, and / or save the number of measuring operations a special function channel n(t) is available (see 10.3.9, 10.3.10).

With Pitot tubes, in order to calculate actual velocity, both **temperature compensation and atmospheric pressure compensation** are required (see 9.2.5, 9.2.6).

 $\overline{\mathbf{v}}$  The average velocity is shown by the function Enter the diameter in mm (maximum 4000): Enter the cross-section area directly in cm<sup>2</sup> Display the volume flow in a Function channel in m<sup>3</sup>/h Output all function values for the menu by pressing Average value 13.24 mis Diameter: 0150 mm Cross-section: 0175 cm<sup>2</sup> volume flow 11: 8343.m<sup>3</sup>lh <PRINT>

### Converting to standard conditions

With all flow sensors that acquire actual ambient conditions with both temperature compensation and atmospheric pressure compensation (see 9.2.5) it is possible to convert the actual measured values to standard conditions, i.e. temperature =  $20^{\circ}$ C and atmospheric pressure = 1013 mbar. To do this '#N' must be programmed in the designation <u>either</u> in the velocity channel <u>or</u> in the volume flow channel only (see 10.3.2); this then automatically produces the **standard volume flow**.

# 9.5 Display of several measuring points

The measuring menus described so far are used for selecting and displaying one measuring point only. In this Chapter we explain how several measuring points can be displayed at the same time combined with the functions of vour choice

## 9.5.1 Menu Multi-channel display and bar chart

The menu Multi-channel disPlay initially shows the measured values of the first three active channels in medium size. However, these can be programmed in numerous ways.



In the menu Bar chart the first four active channels are displayed with measured value and bar chart.

| C ▶ REC COM II                | ► ►I R01 * ■□>               |
|-------------------------------|------------------------------|
| Time 12:34:56<br>01: 21.67 °C | Date 01.01.04<br>TemPerature |
| 10.00 NT                      |                              |
| 10.00 NI<br>11: 7.8 %H        | Humidity                     |
|                               |                              |
| 21: -14.2 0                   | Dew Point                    |
| -20.0 H D                     |                              |
| 31: 1.2 9lk                   | Mix                          |
| 0.0 H AH                      | glk 10.0                     |
| START MANU M                  | 1 PRINT ESC                  |

#### Measuring point selection

The 1st measuring channel is always the selected measuring point.

This can be selected directly, in any menu, by means of To change the other channels, the measuring point must be selected as function by pressing

The selected measuring point can now be changed by means of key(s)  $\leq M \land \geq$ ,  $\leq M \lor \geq$ ... The process of measuring point selection is terminated by pressing key <ESC>



To set the display range for the bar chart the functions Analog start and Analog end in the Special functions menu should be used (see 10.4.4). Having selected these functions they can also be entered directly on the appropriate axis by pressing **PROG** and  $\checkmark$  (see 8.5).

### 9.5.2 Differential measurement

To display the difference between two measuring points a function channel (see 10.3.10) must be programmed with the appropriate reference channels (see 10.4.6). Both sensors must be set with the same decimal point and units.

# 9.5.3 Menu Measuring points list

The best overview of the measuring system with all measured values, date, time-of-day, and cycle can be obtained via the **Measuring Points list** menu. From the measuring points you can also reach **Sensor Programming** for the measuring points.

This menu cannot be configured by the user; it can only be combined with certain selected functions.

Initially the list appears with maximum 20 entries.

Measured values

To select further measuring points lists press or

At over 100 measuring points the hundreds group / device address is displayed in the 1st line.

The measured value can be linked to a series of functions by pressing keys

This reduces the maximum number of channels to 10.

To advance to the next function press Measured value with **designation** :

Measured value with maximum value :

Measured value with minimum value :

Measured value with average value :

Measured value with limit value, maximum :

Measured value with limit value, minimum :

Measuring range only (also maximum 20 channels)

Functions can be selected for programming



Measuring Points list 20 measured values 00: 23.12°C ...



M100-M199:



Meas. Points list - Comment 00: 23.12°C TemPerature Meas. Points list Max value 00: 2312 °C 32.67 90 Meas. Points list Min value 00: 2312 90 19.34 °C Meas. Points list Aver. value 00: 2312 °C 25.45 °C Meas. Points list Limit value, maximum 00: 23.12 °C 32.67 °C Meas. Points list Limit value, minimum 00: 23.12 °C 19.34 °C Meas. Points list Range 00: NTC °C PROG , ▲ / ▼ ... , PROG

ALMEMO<sup>®</sup> 5690-2CPU 43

# 9.6 Wizards for special measuring operations

Special measuring operations, i.e. thermal coefficient or wet bulb globe temperature, require a series of sensors in a particular arrangement and function channels programmed for calculating the required variables. To ensure that these two special measuring operations can be performed quickly and easily there is a special wizard menu for each.

### 9.6.1 Thermal coefficient

q/(T1-T0) To determine the thermal coefficient the two temperature sensors are connected as required (see Manual 3.2) to channels M0 and M1 and the heat flow plate to M2. The temperature difference T(M1)-T(M0) requires a function channel 'Diff' on M11.

For this measuring operation the following programming steps are needed :

Averaging mode on M11 Averaging mode on M2 Range on M11 Range on M12 Enter the cycle by means of Start measuring by pressing Stop measuring by pressing CONT or CYCL CONT or CYCL Diff 9/dt Cycle timer <START> <STOP> Thermal coefficient wizard

| Inside temp Channel                      | 00           |
|------------------------------------------|--------------|
| Outside temP Channel                     | 01           |
| 01: 11.42°C NiCr<br>Difference dt Channe | 11           |
| Avera9. mode Con<br>Heat flow 9 Channel  | t<br>02:     |
| 02: 103.6 Wim²<br>Avera9. mode Con       | t            |
| -Thermal coeff. Chann<br>12: 193 Wimk    | el 12        |
| 1 range 9/d<br>Cycle timer 00:30         | t<br>):00 Sn |
| START MANU                               | ESC          |

### 9.6.2 Wet bulb globe temperature

The stress caused in heat-exposed workplaces can be evaluated in terms of their wet bulb globe temperature calculated according to the following formula :

WBGT = 0.1 DT + 0.7 HT + 0.2 GT (see Manual 3.1.4)

To measure the dry temperature (DT) and the natural humid temperature (HT) a psychrometer (FN A848-WB) with turn-off motor is connected to socket M0. A Pt100 globe thermometer is connected to socket M1. Channel 11 is programmed for WBGT; (for this device the factor 0.2 must not be programmed). Wizard for wet bulb globe temperature

| WET BULB GL                | OBE TEMP.             |       |
|----------------------------|-----------------------|-------|
| Dry temP.<br>00: 21.67°C   | Channel<br>NTC        | 00    |
| Humid temP.<br>10: 11.420  | Channel<br>HT         | 10    |
| Globe temP.<br>01: 19.42°C | Channel<br>P204       | 01    |
| Wet bulb 9lo<br>1 1 .      | be temP. Cha<br>イフ イク | on 11 |
| .<br>1 range               | 17.43<br>WB           | GT    |
| START MANU                 |                       | ESC   |

# 9.7 User menus

Looking at the standard measuring menus you might conclude that the display of measured values and the combination of functions are not always ideally suited to the requirements of your particular applications. You are provided therefore not only with the standard measuring menus but also with three user menus **U1** to **U3** which you can freely configure using the AMR-Control software. You can choose the functions you require from the following list and arrange these on the display exactly as you wish; the only restriction is the available space, namely 13 rows. You can use not only the various measuring functions already described but also various timers for sequence control (see 10.1) and most of the sensor programming functions (see 10.3).

# 9.7.1 Function range

| Functions:                          | Display                       | Ke   | eys  | Com- |
|-------------------------------------|-------------------------------|------|------|------|
| Maggurad value amall                |                               | 7500 | 007  |      |
| Measured value - small              | UU: 234.50 temperature        | ZERU | HUJ  | 0 15 |
| 3 rows                              | 00: 1234.5 °C                 | ZERO | ADJ  | 0 16 |
| Measured value - large              | <b>00:</b> TemPerature °C     |      |      | o 17 |
| 7 rows                              | 1234.5                        | ZERO | ADJ  |      |
| Measured value, bar chart<br>2 rows | 5.0 S220 m/s 15.00            |      |      | o 34 |
| Limit value, max. (see 10.3.5)      | Limit value, max 1234.5°C     | OFF  | ON   | o 00 |
| Limit value, minimum                | Limit value, min    -0123.4°C | OFF  | ON   | o 01 |
| Base value (see 10.3.6)             | Base value°C                  | OFF  | ON   | o 02 |
| Factor                              | Factor 1.12345                | OFF  | ON   | o 03 |
| Exponent                            | E×Ponent 0                    | OFF  | ON   | o 48 |
| Zero point (see 10.3.7)             | Zero Point°C                  | OFF  | ON   | o 04 |
| Gain                                | Gain                          | OFF  | ON   | o 05 |
| Analog start (see 10.4.4)           | Analog start 0.0°C            | OFF  | ON   | o 06 |
| Analog end                          | Analog end 100.0°C            | OFF  | ON   | o 07 |
| Range (see 10.3.9)                  | Range NiCr                    | CLR  |      | o 08 |
| Maximum value (see 9.1.2)           | Max value 1122.3°C            | CLR  | CLRA | o 09 |
| Minimum value                       | Min value 19.3°C              | CLR  | CLRA | o 10 |
| Average value (see 9.4.5)           | Average value                 | CLR  | CLRA | o 11 |
| Cycle (see 10.1.2)                  | Cycle 00:00:00Un              | CLR  | FORM | o 12 |
| Date, time-of-day (see 10.1.1)      | Time 12:34:56 Date 01.02.00   | CLR  |      | o 14 |
| Averaging mode (see 9.4.2)          | Avera9. mode Cont             | CLR  |      | o 18 |
| Measuring rate (see 10.1.3)         | Meas. rate 10 M/s Cont        | OFF  | ON   | o 19 |
| Cycle timer (see 9.3.2)             | Cycle timer 00:00:00Un        | CLR  | FORM | o 20 |

ALMEMO<sup>®</sup> 5690-2CPU 45

#### 9. Measuring with the measuring menus

| Mean Number (see 9.4.3)           | Number                | 00000                  |      |       | o 22 |
|-----------------------------------|-----------------------|------------------------|------|-------|------|
| Number (see 10.2.3)               | Number                | 123-56                 | OFF  | ON    | 0 23 |
| Range, designation                | NiCr TemPer           | ature M H Z            |      |       | 0.24 |
| Diameter, mm (see 9.4.9)          | Diameter (            | )000 mm                | CLR  |       | 0.25 |
| Cross-section $cm^2$ (see 9.4.9)  | Cross-sectio          | n 0000 cm <sup>2</sup> | CLR  |       | 0.26 |
| Max date and time-of-day          | Max time 12           | 2:34 01.02.            |      |       | 0.28 |
| Minimum date and time-of-day      | Min time 13           | :45 01.02.             |      |       | 0.29 |
| Empty line                        |                       |                        |      |       | 0.30 |
| l ine                             |                       |                        |      |       | 0.31 |
| Smoothing (see 9.4.1)             | Smoothing             | 10                     | CIR  |       | 0.32 |
| Memory available (see 9.3.3)      | Memory free           | 5021 KB                | CMEM | PRINT | 0.33 |
| Device designation (see 10.5.1)   | ComPany nam           | e - O Specimen         | CIR  |       | 0.36 |
| Text 1                            | 1: Necignation        | n line                 | CIR  |       | 0.37 |
| Text 2                            | 2: Necignation        | n line                 | CIR  |       | 0.38 |
| Tex t 3                           | Manu titla III        |                        | CIR  |       | 0.00 |
| Text 1                            | Manu titla 112        | i                      | CIR  |       | 0.09 |
| Text 5                            | Manu titla 112        | ·                      | CIP  |       | 0 40 |
| Locking (see 10.3.4)              | Locking               | Ę                      | CIR  |       | 0 41 |
| Atmospheric pressure (10.5.6)     | Otm Droccure          | 1012 mbar              | CIP  |       | 0 42 |
| Tomp componention (see 0.2.5)     | Tomb comb C           | T 2E 00C               | CLA  |       | 0 43 |
| Setpoint (200 0 2 4)              | Cotooint              | 1100.0 00              | OFF  | 007   | 0 44 |
| Macouring time (and 0.4.6)        | Jetroint<br>Mosc time | 00.00.00 00            |      | HUJ   | 0 45 |
| Macouring duration (and 10.1.4)   | Masa dunctia          |                        |      |       | 0 40 |
| ivieasuring duration (see 10.1.4) | rieas duratio         | n 00:00:00             | LLK  |       | 0 4/ |
| Ivienu end                        |                       |                        | 1    |       | 0 99 |

# 9.7.2 Configuring the menus

From the measuring menu choose a user menu

U1. U2 or U3, that you do not need at the moment

To configure this please connect the device via a data cable to your PC and start the supplied **AMR-Control software**.

Click once with the mouse on

You then reach

Select the device and press

Choose the desired functions on the left side and drag-and-drop into the menu window on the right.

MEASURING menus

Search the network Device list Program the user menus

For all functions concerning measured values (e.g. maximum, average value, bar chart) you must in each case enter the measured value of the measuring point first and then the associated functions. You are advised to use a meaningful menu title User menu title Once completed save the menu in the device as Ux Save menu, Ux, OK You can also save all your menus on the PC and reload these as and when required.

### 9.7.3 Function printouts

You can print out the functions of all measuring menus in the order displayed by pressing **PRINT>** (see 9.3.4).

The various functions are listed in the following table :

| _ |    |     |    |   |   |
|---|----|-----|----|---|---|
| - |    | ••• | •• | ^ | n |
| г | uı |     |    | u |   |
| - |    |     |    | - |   |

#### Command

| Measured value, all formats     | 01: +0023.5 °C temperature                           | P35           |
|---------------------------------|------------------------------------------------------|---------------|
| Maximum value                   | Maximum value 01: +0020.0 °C                         | P02           |
| Maximum time                    | MAX_TIME 01: 12:32 01.02                             | P28           |
| Minimum value                   | MTN VALUE 010010 0 °C                                | P03           |
| Minimum time                    | MIN TIME $01 \cdot 12 \cdot 32 \ 01 \ 02$            | P29           |
|                                 | AVERAGE VALUE 01. +0017 8 °C                         | P14           |
| Averaging mode                  | AVERAGING MODE 01: Continuous                        | P21           |
| Number of averaged values       | NUMBER OF AVERAGED VALUES 01 · 00178                 | P22           |
| Memory especity free            | MEMORY S0512 1 E0324 / A                             | D33           |
| Number                          | NUMBED 01_012                                        | P23           |
| Nullipel<br>Danga (designation) | DANGE 01 · NiCr                                      | P20           |
|                                 | ITMIT VALUE MAY 01. 0100 0 °C                        |               |
|                                 | LIMIT VALUE MIN 01. 0020 0 °C                        |               |
| Limit value, minimum            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | P09           |
| Base value                      | DASE VALUE UI: -UZ/3.U C                             | PU0           |
|                                 | TAUTUR UI: +1.0300E-1                                | FU/           |
| Zero-point correction           | ZERU-PUINI UI: -UUUU./ C                             | 11 PU0        |
| Gain correction                 | GAIN UI: +I.UUI3                                     | D1C           |
| Analog start                    | ANALOG END 01 +0100.0 °C                             | P10           |
| Analog end                      | ANALUG END UI: +UIUU.U °C                            | P1/           |
| Cycle                           | PRINT LYLLE UU:Ub:UU                                 | PII<br>C1 D11 |
| Cycle timer                     | PRINT TIMER UU:U6:UU                                 | TI PII        |
| Date, time-of-day               | 11ME-UF-DAY 12:34:00 01.02.04                        | PIU, PI3      |
| Start time                      | START TIME U7:00:00                                  | TI PIU        |
| End time                        | END TIME 1/:00:00                                    | T2 P10        |
| Start date                      | START DATE                                           | TI PI3        |
| End date                        | END DATE 02.02.04                                    | †2 PI3        |
| Measuring time                  | MEASURING TIME 00:00:00.00                           | P46           |
| Measuring duration              | MEASURING DURATION 00:00:00                          | P47           |
| Smoothing                       | SMOOTHING 01: 10                                     | P32           |
| Diameter                        | DIAMETER 01: 00100 mm                                | P25           |
| Cross-section                   | CROSS-SECTION 01: 00078 cm2                          | P26           |
| Atmospheric pressure            | ATMOSPHERIC PRESSURE +01013 mbar                     | P43           |
| Temperature compensation        | COMPENSATION 01: 25.0°C                              | P44           |
| Setpoint                        | SETPOINT 01: 1100.0 °C                               | P45           |
| Device designation              | Ahlborn, Holzkirchen                                 | P36           |
| Line                            |                                                      | P31           |
| Empty line                      |                                                      | P30           |
| Text 1                          | Designation text 1                                   | P37           |
| Text2                           | Designation text 2                                   | P38           |
| Text3                           | Menu title U1                                        | P39           |
| Text 4                          | Menu title U2                                        | P40           |
| Text 5                          | Menu title U3                                        | P41           |
| Locking                         | Locking 5                                            | P42           |

# **10. PROGRAMMING VIA THE PROGRAMMING MENUS**

So far in looking at the measuring menus you have got to know not only the various measuring functions but also a series of functions for process control and sensor programming.

A comprehensive and systematic list of all programming functions is provided here in our description of the **PROGRAMMING menus**.

The selection menu can be accessed from the measuring menu selection by pressing **MENU1>**.

For certain programming functions there are also **WIZARD menus** available.

# 10.1 Times and cycles

All time functions used for measuring, process control, and logging purposes can be collated and programmed in the programming menu **Times – cycles**.



| * TIME CY                                                          | CLES *                                                         |
|--------------------------------------------------------------------|----------------------------------------------------------------|
| Time 12:34:56<br>Cycle<br>Sa∨ing ⊬M<br>OutPut format               | Date 01.01.04<br>00:00:00 Sn<br>ode, normal<br>Columns         |
| Meas rate 10<br>OutPut -<br>Saving -                               | M⁄s Cont -<br>-                                                |
| Measuring dura<br>Start time<br>Start date<br>End time<br>End date | ation 00:00:00<br>07:00:00<br>01.01.04<br>17:00:00<br>01.01.04 |
|                                                                    | PRINT ESC                                                      |

# 10.1.1 Date and time-of-day

The ALMEMO 5690-2 incorporates an integrated real-time clock with date and time-of-day for logging measuring times. This is fitted with a lithium battery ensuring that date and time-of-day are retained intact even when the device battery has to be replaced. The first line contains the date on the right and the time-of-day on the left; by selecting this function (see 8.4) these can be programmed in the format indicated (see 8.5).

Function, date and time-of-day Format of time-of-day and date Time 12:34:56 Date 01.05.00

hh:mm:ss dd.mm.yy

### 10.1.2 Cycle with memory activation and output format

To have measured values saved cyclically and output via the interface **Cycle must be used**; (this corresponds to the print cycle with other ALMEMO <sup>®</sup> devices; the measuring cycle is no longer implemented). Saving per cycle, i.e. cyclic recording of data to the memory, is automatically activated after each

reinitialization but can be deactivated as and when required.

The output format (see Manual 6.6.1) defines the print layout for measuring point scans. This output format can be programmed in the function **Output** format. There is the default format 'List' in which all measured values are listed one below the other; there is also the Columns' format listing them next to one another; this provides a clear, easy-to-understand, and space-saving printout. For this latter format the printer is switched over automatically to compressed character mode. There is also the 'Table' format which is suitable for further processing using a spreadsheet program; (see print layouts, Manual 6.1). For memory output with the CPU system only Table format is available. Cycle 00:15:00

<CLR>.

<0N>

<0FF> ----

Mode, sleep

Saving 🗖 Mode, normal

Function, cycle (format hh:mm:ss):

To clear the cycle and end the current scan press

Function, memory activation in the cycle

Saving to memory ON (default setting) Saving to memory OFF

Function Scanning mode e.g. Sleep (see 10.2.5)

Output format 'List of measured values one below the other OutPut format List Output format 'n' Columns of meas. values next to one another Output format Columns Output format 't' Table of meas. values, semi-colon separated OutPut format Table After the cycle, memory activation ON is indicated by 'S' and Cycle 00:15:00 Sn OFF by 'U'. The format is indicated by abbreviation 'n' or 't. ':

### 10.1.3 Measuring rate, Continuous measuring point scan

As and when necessary the measuring rate (conversion rate) for measuring point scans can be changed, via the Measuring rate function, from its standard setting of 10 mops to 2.5 / 50 / 100 mops (see Manual 6.5).

There is also an option (SA0000-Q4) for setting the measuring rate to 400 mops but this is only possible for passive selector switch boards and only for 1 measuring point at a time.

#### Semi-continuous measuring point scan

The option of scanning only the selected measuring point (non-continuous) is no longer provided because ignoring all the other sensors may easily lead to errors. However, it may be useful, especially when numerous sensors are being used, to assign preferred priority to the selected measuring point and update its measured value more frequently, e.g. for the purposes of analog output or measured value smoothing. The default setting is therefore now no longer the 'non-continuous' but the 'semi-continuous' measuring point scan, i.e. all measuring points are continuously scanned but the selected measuring point M is scanned in each 2nd measuring operation. This reduces the total sampling rate otherwise required with continuous measuring point scanning by half. This mode is not available for active selector switches with measuring circuit.

**0** M 1 M 2 M 3 M 4 M 5 M **0** M 1 M 2 M 3 Μ

> ALMEMO® 5690-2CPU 49

#### Continuous measuring point scan

In the default setting **continuous measuring point scanning** all active measuring channels are scanned uninterruptedly one after the other and equally often at the chosen measuring rate; at the end of this process a special measuring operation S is inserted; (see Manual 6.5.1.3).



With both the following functions **continuous saving to memory** and **continuous output** of measured values can be activated at the measuring rate.

**Function, measuring rate** Enter, see 8.5 Continuous measuring point scan (default) Semi-continuous measuring point scan Continuous saving to memory, OFF Continuous saving ON Continuous output OFF Continuous output ON



It should be noted, however, when selecting the measuring rate, that the higher the measuring rate so the lower the measuring quality and, conversely, the lower the rate, the higher the quality.

At measuring rates above 10 mops (measuring operations per second) mains hum suppression is not possible; as a result accuracy may be adversely affected by interference over the connection lines; (wherever possible use twisted wires).

When acquiring measured values at a rate of 100 mops we recommend that in mains operation the ground socket on the device be connected to protective ground because measuring errors might otherwise occur.

#### Scan time and total sampling rate

With passive selector switches the scan time for a measuring point scan depends directly on the number of activated measuring points.

Scan time = (measuring points + 1 special measuring operation + cold junction compensation measurements) / measuring rate

Only with thermocouple measuring operations are 1 or 2 additional cold junction compensation measurements required per plug-in module (see 7.3).

Example 6 selector switches with 10 sensors (of which 2 with thermocouples)

Scan time at 10 mops =  $(60 + 1 + 2x^2) / 10$  mops = 65 / 10 = 6.5 seconds Scan time at 50 mops =  $(60 + 1 + 2x^2) / 50$  mops = 65 / 50 = 1.3 seconds

In the case of active selector switches with measuring circuit all plug-in modules measure in parallel; only the plug-in module with the most sensors (including cold junction compensation measurements) determines the scan time. The more measuring circuit boards there are, the more measuring points are acquired in the same time. However, the total sampling rate is limited, by the processing speed and the display communications of the CPU, to 220 mops.

#### Example 6 selector switches with 10 sensors (of which 2 with thermocouples) Scan time at 10 mops = (10 + 1 + 2x2) / 10 mops = 15 / 10 = 1.5 seconds Scan time at 50 mops = (10 + 1 + 2x2) / 50 mops = 15 / 50 = 0.3 seconds Total sampling rate = 65 measuring operations / 0.3 s = 216 mops but Scan time with 10 selector switches, 50 mops = 105 measuring operations / 220 mops = 0.5 seconds

### 10.1.4 Start time Start date End time End date Meas. duration

A measuring series can be started and stopped automatically at specified times. For this purpose the start time and start date, and the end time and end date must be programmed. If no particular date has been programmed, the measuring operation will be performed every day within the set period. This is assuming of course that the current time-of-day has been programmed. Or, alternatively, instead of specifying the end time-of-day the measuring duration itself can be programmed; (see 9.4.6, 10.2.2).

**Function, measuring duration** (Format hh:mm:ss):

Function, start time (Format hh:mm:ss):

Function, end time (Format hh:mm:ss):

Function, start date (Format dd:mm:vv):

Function, end date (Format dd:mm:yy):

These values can be cleared by selecting the function and pressing If the start time for a measuring operation has been programmed,

the following symbol appears in the status bar

If the end time or the measuring duration for a measuring operation has been pro- **M** grammed, the following symbol appears in the status bar

# 10.2 Measured value memory

The CPU measuring circuit board is equipped as standard with a 2-MB RAM: this is sufficient for 250000 to 400000 measured values (depending on the number of channels). This RAM is buffered by means of a lithium battery, just like the real-time clock. For critical applications conducted over long periods non-volatile FeRAMs are also available as an option. How this measured value memory is organized and how data is recorded to it and output from it are described in the Manual, Section 6.9. It can be configured either as linear memory or ring memory; (see Manual 6.10.13.2). For memory output with the CPU system only table format is available. As on all other ALMEMO data loggers the internal memory supports the following functions :

Recording to ring memory, sleep mode Selective data output according to date and time-of-day Selective data output by number However, only one connector configuration is possible.

However, only one connector configuration is possible.

Or, alternatively, a multimedia card can be used in slot (4).

Meas duration 00:00:00 Start time 07:00:00 End time --.--Start date 01.05.00 End date --.--

### 10.2.1 Memory with multimedia card

Normally a conventional multimedia flash memory card can be used as external memory . This offers virtually unlimited memory capacity and the data can be evaluated elsewhere as and when required. The memory card should preferably be RS form (reduced size), half size, 32 to 512 MB; measured data is written to it in table mode and in standard FAT16 format. The MM card can be formatted and its contents can be read and deleted via any normal PC using any card reader. Measured data can be imported into MS-Excel or into Win-Control.

#### Functions of the MMC memory

Virtually unlimited memory capacity With each new connector configuration a new file is created. <u>No</u> recording to ring memory Sleep mode is possible. Data can be evaluated using any reader on site or elsewhere. Very high-speed data transfer via the reader Data recording and output in table format only Via the ALMEMO device itself only the last file can be read. <u>No</u> selective data output according to date and time or by number

The memory card is inserted in slot (4) on the front panel; it is recognized automatically. You can verify this in the menu **Record to memory** (see 10.2.2) in the function **External memory** by the increased memory capacity and the file name in the function **File name**. If the external memory is connected at the start of any measuring operation, it will be used. In the course of the measuring operation it must not be unplugged; this would cause temporarily buffered measured values to be lost.

Memory capacity available, external Memory capacity still free

External memory 64.00 MB Memory caPacity free 21.75 MB File name ALMEMO.001

File name (maximum 8 characters) File name ALMEMO.001 Before starting any measuring operation you can, in the function File name, enter an 8-character file name. In the absence of a user-assigned file name, the default name ALMEMO.001 or the name most recently used will be suggested automatically. So long as the connector configuration is not altered, you can save several measuring operations, either manually or cyclically, also with numerical assignment, all in the same file (see 10.2.3).

If, however, the **connector configuration** has been changed since the last measuring operation and if no new file name has been programmed, then a new file is always created and in so doing the index in the file name extension is automatically incremented by 1, e.g. 'ALMEMO.002'. Similarly, if the file name entered already exists, then a new file will be created with the same file name prefix but with a new index.

# 10.2.2 Measured data recording

Most of the parameters needed for the **recording of measured values** have already been examined in our description of the menu **Times - cycles** (see10.1).

- 1. Date and time-of-day
- 2. Cycle, memory activation, sleep mode
- 3. Measuring rate with memory activation

4. Start time and end time for a measuring operation

The preparations for recording to memory can be made most easily using the menu **Record**+ing to memory.

There are numerous methods available for starting and stopping a measuring operation, some also with their own wizards (see 10.2.4).

**PLEASE NOTE**! The first time the device is started only <u>one</u> sensor configuration is saved to the internal memory; however, with effect from the next start this can be supplemented by additional sensors. However, if <u>other</u> sensors are connected the memory must be read out and then cleared before the next recording session.

| Menu Recording to memory :                           |             |
|------------------------------------------------------|-------------|
| Memory capacity available, internal                  | Memory, i   |
| Memory capacity still free                           | Memory fi   |
| Memory capacity available, external                  | External    |
| Linear memory, data is not overwritten               | Ring memo   |
| Ring memory, data is overwritten                     | <on></on>   |
| Active channels for minimum cycle                    | Meas. cha   |
| and available memory time                            |             |
| Enter cycle (see 8.5, format hh:mm:ss.cc)            | Cycle       |
| Minimum cycle with 50 mops,                          | <min></min> |
| depending on number of channels                      |             |
| Cycle without saving in normal mode                  | Saving -    |
| To select and activate saving to memory press        | <on></on>   |
| To activate sleep mode (see 10.2.5) press            | PROG, 🗸, PI |
| Available memory time from the cycle                 | Memory ti   |
| and the number of channels                           |             |
| Measuring duration after start; automatic stop after | meas dur    |
| File name with memory connector                      | File name   |
| (maximum 8 characters)                               |             |
| Number e.g. room 12, measuring point 1 (see 10.2.3)  | Number      |
| , , , ,                                              |             |

| * RECORDING TO MEMORY<br>*                                        |
|-------------------------------------------------------------------|
| Memory, internal 512.0 KB<br>Memory caPacity free 125.8<br>KB     |
| Ring memory v<br>Measuring channels 24 Act+<br>ive 05             |
| Cycle (100000000)<br>Saving ⊭ Mode, normal<br>Memory time 24d 13h |
| Measuring duration 00:15:00                                       |
| File name Almemo.000                                              |
| Number 01-001 A                                                   |
| CLR MIN F ESC                                                     |

| Memory, internal<br>Memory free<br>External memory<br>Ring memory –<br>≪ON≥<br>Meas. channels 24 | 1024.0 KB<br>217.5 KB<br>64.01 MB<br>v<br>active 05 |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| Cycle                                                                                            | 00:01:00.00                                         |
| <min></min>                                                                                      | 00:00:00.12                                         |
| Saving – Mode, i                                                                                 | normal                                              |
| KON> Mode                                                                                        | de, normal                                          |
| PROG M PROG Mod                                                                                  | de, sleeP                                           |
| Memory time                                                                                      | 24d 13h                                             |
| meas duration 0                                                                                  | 0:15:00                                             |
| File name ALMEM                                                                                  | 0.001                                               |
| Number                                                                                           | 12-001 A                                            |

# 10.2.3 Numbering of measuring operations

To identify measuring operations or series of measuring operations these can be individually numbered before starting. This number is output or saved when the next measuring point scan starts. In this way individual measuring operations can when read out be assigned to certain measuring locations or measuring points (see Manual 6.7).

After selecting the function **Number** the 6-digit number is entered as normal (see 8.5). You can use digits 0 to 9 and also the characters A, F, N, P, and - or \_ (space). The number is activated as soon as it has been entered; it will then be followed by the letter 'A' until the next cyclic or manual measuring operation is saved.

Function, number (e.g. room 12, measuring point 1) NUMBER:

To zero-set and deactivate the number press To activate and deactivate the number press To increment and activate the number press

### 10.2.4 Starting and stopping measuring operations

A measuring operation can be started and stopped not only by pressing the appropriate keys but also using numerous other methods provided in the **START - STOP** wizard.

Operation via the interface is described in the Manual, Section 6.6.

The function using a start time and end time or measuring duration is described in Section 10.1.4; limit value actions are described in Section 10.4.3; and the relay and trigger variants are described in Section 10.6.2.



PROG , <CLEAR>

< +1 >

12-001 A

# 10.2.5 Scanning mode

For autonomous operation and / or for scanning by computer there are 4 scanning modes available.

Normal Internal cycle or cyclic scanning by the computer

- Sleep Internal cycle only, automatically switching off for long-term monitoring
- Monitor Internal cycle, not disturbed by computer scanning
- Fail-safeCyclic scanning by the PC; after any failure, internal cycle

#### Sleep mode:

For long-term monitoring involving large measuring cycles the device can also be operated in sleep mode. In energy-saving sleep mode the measuring instrument is completely switched off after each measuring point scan (please note when using sensors with own power supply) and switched on again automatic-

Measured value memory

ally after the cycle expires ready for the next measuring point scan. In this way, depending on the number of channels, it is possible, with just one set of batteries, to perform up to 15000 measuring point scans; with a cycle lasting 10 minutes this represents a measuring duration of up to 100 days.

For data recording in sleep mode go to the menu **Recording to memory** and take the following steps :

- 1. Enter a cycle lasting at least two minutes.
- 2. Activate saving to memory in the cycle.
- 3. To select scan mode
- 4. To activate sleep mode press
- In a measurements menu, start meas by pressing The device should then display The display then switches off; as verification the LED 'SLEEP' (2) flashes rhythmically on and off.
- 6. In the specified cycle the instrument switches on automatically, performs one measuring point scan, and then switches off again.
- 7. To terminate sleep mode press
- 8. To terminate the measuring operation press

Stopping based on the end time or according to limit values is not possible in sleep mode; this must be switched off.

#### Monitor mode :

This new 'monitor mode' should be used when a data logger, being operated on a cyclic basis, is to be monitored occasionally by computer. Internal cyclic scanning is not influenced in any way by software scanning; (in Win-Control 'safe initialization' must be switched off).

The internal cycle is started as and when the software starts; it may also have been started previously. When scanning with the internal cycle no data is output to the interface. In order to record data the memory must have been activated. In the **Mode** function program the **Monitor** variant **Mode**, **monitor** 

#### Fail-safe mode :

The fail-safe mode is suitable when scanning is purely software-based; it merely ensures, in the event of computer failure, that scanning will continue on an internal cyclic basis. In this mode the cycle programmed in the device must be longer than that needed for software scanning. Software scanning keeps resetting the internal cycle with the effect that this cycle is only actually used as and when software scanning fails; (in Win-Control "safe initialization" must be switched off).

The internal cycle is started as and when the Win-Control software starts; it may also have been started previously. When scanning with the internal cycle no data is output to the interface. In order to record data the memory must have been activated. In the **Mode** function program the **Fail-safe** variant **Mode**. fail-safe

| Cuela           | 00.02.00 8   |
|-----------------|--------------|
| 0 2016          | 00.00.00 0   |
| Saving 🔽        | Mode, normal |
| Saving v        | Mode, normal |
| PROG , 💙 , PROG | Mode, :sleeP |
| <start></start> |              |
| Sleep ON        |              |
| LED 'SLEEP' (   | 2) flashes   |



### 10.2.6 Memory output

The **internal measured value memory** can be output via the serial interface in the 'Table' output format either completely or in excerpts. Certain sections of the memory can be specified for output by stipulating the start time and end time or by selecting the number or range of numbers defining the measuring operations.

With external MMC memory cards (see 10.2.1) there is only one option available, namely output in table format of all the measured data contained in the file most recently used (even if over 100 measuring points). For this purpose simply press **PRINT** in the **Memory** 

**free** function in the **Memory outPut** menu or in certain measuring menus. The most sensible approach is to remove the memory card and copy all the files via a USB card reader directly onto the PC. These can then be imported either into MS-Excel or into Win-Control (as of V.4.9).

#### Menu Memory outPut :

Output format cannot be changed :

| To sele | ct a numbered m | easuring operation :   | Number  |
|---------|-----------------|------------------------|---------|
| In the  | Number function | select the number by p | ressing |

#### <NEXT> ..., <LAST>

#### To select a time frame :

Enter the start time in the format 'hh:mm:ss' Enter the end time in the format 'hh:mm:ss' Enter the start date in the format 'dd:mm:yy' Enter the end date in the format 'dd:mm:yy'

To output the measured value memory in full

To output a measuring operation with its number

To output the time frame from start to end

To abort memory output press

The memory content is always output in table format (see Manual 6.6.1).

During memory output, in the **OutPut – remaining** function, the amount still to be output is continuously updated and displayed in KB. The current values for time-of-day, date, and number are also shown.

Memory output, remaining

Current number of memory output

Current date and time-of-day of memory output

| OutPut -<br>Number | remainii<br>01 01 | 19<br>01 | 12.5   | KB |
|--------------------|-------------------|----------|--------|----|
| Time 12:3          | 34:56 Da          | ite 0:   | 1.01.0 | )4 |

| Start time    | 07:00:00 |
|---------------|----------|
| End time      | 17:00:00 |
| Start date    | 01.05.00 |
| End date      | 01.05.00 |
| <all></all>   |          |
| <nr></nr>     |          |
| <time></time> |          |
| <stop></stop> |          |

Table

12-001 <FIRST>

OutPut format

| * MEMORY OUTPL                                                         | JT *                                        |
|------------------------------------------------------------------------|---------------------------------------------|
| Memory, internal<br>Memory free                                        | 512.0 KB<br>125.8 KB                        |
| OutPut – remaining                                                     | 12.5 KB                                     |
| OutPut format                                                          | Table                                       |
| Number<br>Time 12:34:56 Date                                           | 01-001 A<br>2 01.01.04                      |
| Time frame<br>Start time 0<br>Start date 0<br>End time 1<br>End date 0 | 17:00:00<br>11.01.04<br>7:00:00<br>11.01.04 |
| ALL NR F TI                                                            | ME ESC                                      |

#### Clear the memory

Select the Memory capacity free function (see 8.4): To clear the memory press

PLEASE NOTE If a memory card is being used, the card will be reformatted and all files will be deleted

The full capacity will be shown as available memory. To cancel press

# 10.3 Sensor programming

Since on ALMEMO® devices all sensor programming is stored in the ALMEMO® connector itself, the user will not normally need to reprogram each time. Programming will only be necessary e.g. if sensor errors are corrected, if your own sensors are scaled, or if certain limit values are stipulated: in these circumstances there are comprehensive programming functions available.

In the SENSOR PROGRAMMING menu all parameters for a channel can be entered. viewed, checked, and modified via the keypad - providing the appropriate sensor

connector is plugged in. Please note that series sensors featuring the locking mode can be protected against unintended alteration; therefore, if modification is required this locking mode must first be lowered to an appropriate level (see 10.3.4). Functions can only be selected if the locking mode allows; all other functions remain graved out.

To output sensor programming of all active measuring points (command P15, see Manual 6.2.3) press <PRINT>

### 10.3.1 Selecting the input channel

To view or edit a sensor's parameters you must first of all select the menu **SENSOR PROGRAMMING** and then set the required input channel by pressing or  $\square$  Only sensors actually connected and channels actually activated can be processed. To activate new channels first press the key <mail> to select all channels. Then press </ to reduce this selection again to only those that are **active**. For each input channel the associated connector number is displayed.

Memory free 512.0 KB <ESC>



Memory free

<CMEM>

SELLEKB

#### Menu SENSOR PROGRAMMING :



# 10.3.2 Measuring point designation

Each measuring point can be assigned a 10-character alphanumerical designation (all ASCII characters) denoting as clearly as possible the type of sensor, measuring location, and / or purpose. This designation is included in all standard measured value displays. In an output via the interface the measuring point designation appears in the program header as 'DESIGNATION' and also in the measured value list (see Manual 6.6.1).

Entry in function 'Designation' see 8.5

**Designation TemPerature** 

Certain **control characters** at the beginning of the designation have **special functions** :

- <sup>\*\*</sup>J<sup>′</sup> defines a temperature sensor (NTC, Pt100) as reference for external cold junction compensation (see 9.2.7, Manual 6.7.3).
- '#J' means that an internal cold junction sensor is to be used with a thermocouple (e.g. connector ZA9400-FSx with NTC); (see 9.2.7, Manual 6.7.3).
- \*T' defines a temperature sensor (NTC, Pt100) as reference for temperature compensation (see 9.2.5).
- \*P' defines an atmospheric pressure sensor as reference for atmospheric pressure compensation (see 9.2.6).
- '#N' ensures that values on flow sensors are converted to standard conditions; (see 9.4.9)

The remaining 8 characters can be used for the user's own descriptions.

'!' at the end automatically indicates a specific user-defined linearization or calibration (see 10.3.11). This cannot be overwritten.

# 10.3.3 Averaging mode

The various averaging methods can be defined via the **Averaging mode** function; these are described in Section 9.4.2.

| Function - no averaging                             | Averaging mode |      |
|-----------------------------------------------------|----------------|------|
| Averaging over all active measuring point scans     |                | Cont |
| Averaging over all measuring point scans in a cycle |                | CYCL |

### 10.3.4 Locking the sensor programming

The functional parameters for each measuring point are protected by means of the locking mode; this can be set to the desired locking level (see Manual 6.3.12). Before programming you must lower the locking mode to an appropriate level. If you see a dot in the display after the locking mode, this means that this cannot be modified.

| Locking level | Locked functions                               |
|---------------|------------------------------------------------|
| 0             | none                                           |
| 1             | Measuring range + element flags + output mode  |
| 3             | plus units                                     |
| 4             | plus zero-point correction and gain correction |
| 5             | plus base value, factor, exponent              |
| 6             | plus analog output, start and end              |
|               | plus zero-point adjustment, temporary          |
| 7             | plus limit values, maximum and minimum         |
|               |                                                |

Function Locking mode:

Clear locking by pressing

In the **SENSOR PROGRAMMING** menu the functions are listed from top to bottom in such a way that the locked functions cannot be selected.

### 10.3.5 Limit values

Two limit values (maximum and minimum) can be programmed per measuring channel. Exceeding one of these limit values is treated as a fault (in the same way as exceeding a measuring range limit or as sensor breakage). If any of the channels is faulty, an arrow appears in the display in front of the measured value ( $\blacktriangle$  or  $\checkmark$ ), an alarm signal sounds (to switch this off, see 10.5.8), and alarm relay R00 (option) in socket P0 (5d) is triggered (see 10.6). Limit values can also have relays in adapters assigned to them (see 10.4.3). This alarm status remains effective until the measured value returns within the prescribed limit value by the amount set as hysteresis. Hysteresis is set by default to 10 digits but this can be adjusted to any number between 0 and 99 (see 10.5.7). The event of a limit value being exceeded can also be used to start or stop a measuring operation or for other actions (see 10.4.3).

#### Function

Enter limit value, maximum (see 8.5): Limit value, minimum To switch off limit value To switch on limit value

| 7 Limit value, maximum<br>7 Limit value, minimum | 123.4°C<br>°C |
|--------------------------------------------------|---------------|
| <off></off>                                      |               |
| <on></on>                                        |               |

Locking 5 <clfar>

# 10.3.6 Scaling, Decimal point setting

To display the electrical signal of a sensor as a measured value in its physical size it is nearly always necessary to perform a zero-point shift and multiplication by a factor. To perform these steps the functions BASE and FACTOR are provided. For a detailed description of scaling, with an example, please refer to the Manual, Section 6.3.11.

#### Displayed value = (corrected measured value - BASE) x FACTOR

The FACTOR can be programmed within the range -2.0000 to +2.0000. For factors below 0.2 or above 2.0 the decimal point setting should be specified by entering the EXPONENT. Using EXPONENT the decimal point can be shifted as far to the left (-) or to the right (+) as the

display and printer permit. An exponential view of measured values is not possible.

To calculate the scaling values automatically

- 5 Base value : -----
- 5 Factor:
- 5 ExPonential :

from the actual values and setpoints the WIZ+ ARDs include the menu Scaling.

ñ

Once the scaling values have been programmed and the actual measured value thus modified, the measured value status (see 8.2) is indicated by the correction arrow

| * SCALING                        | *                     |
|----------------------------------|-----------------------|
| Connector :0<br>channel : 00     | Measuring             |
| Actual value 1<br>Actual value 2 | 4.000 mA<br>20.000 mA |
| Decimal Places<br>2 - Units      | 1 °C                  |
| SetPoint 1<br>SetPoint 2         | -100.0 °Č<br>40000 °C |
| 5 Base value<br>5 Factor         | 720.0 °C<br>0.31.25   |
| 5 ExPonent<br>4 Gain             | 2                     |
| 00: 27.0 °C                      |                       |
| CLR F                            | OK ESC                |

# 10.3.7 Correction values

Sensors can be corrected by means of the correction values ZERO-POINT and GAIN; (see 9.2.4, Manual 6.3.10).

Corrected measured value = (measured value - ZERO-POINT) x GAIN

#### Function

Zero-point correction: Gain correction:

To switch on and off press

| 4 Zero-      | Point       | °C  |
|--------------|-------------|-----|
| 4 Gain       |             | .°C |
| <on> or</on> | <off></off> |     |

Once the scaling values have been programmed and the actual measured value thus modified, the measured value status (see 8.2) is indicated by the correction arrow  $\mathbb{A}$ .



To reach maximum accuracy multi-point calibration of sensors is now also possible - with option KL (see 10.3.11).

## 10.3.8 Change the units

For each measuring channel the default units for the measuring range can be replaced with any two-character units; (see Manual 6.3.5). All upper-case and lower-case letters, special characters °, W, %, !, [, ], \*, -, =, ~ and space (\_) can be used. The units are shown as two characters after the measured value or programming value. To change the units use the function: **2 Units °C** 



If you enter **°F** as units the temperature value will be converted automatically from degrees Celsius to degrees Fahrenheit. If you enter **!C** cold junction compensation will be disabled. If you enter the appropriate two characters the following units are generated automatically : **mIs** for **ms**, **m³lh** for **mh**, **WIm²** for **Wm**, **glk** for **gk**.

### 10.3.9 Selecting the measuring range

If you want to program the connectors yourself or if you often need to change the measuring range you will have to disable the locking mode for the connectors in question by setting the locking level to 0 (see 10.3.4); please note also that for certain transducers a special connector is required (e.g. thermo, shunt, divider, etc., see the table). To activate a new measuring channel first press **MALLS** to activate all channels, then select the required input channel (see 10.3.1), and then enter the measuring range. When the input for the new measuring range is confirmed all programming values for that input channel will be deleted.

Function, Measuring range selection1 RANGENiCrTo accept the selection of all possible meas. channels press<MALL>To deactivate a channel press<OFF>To reactivate a channel pressPROG , PROGProgramming the range is as for data input (see 8.5) PROG , \_\_\_\_\_\_\_\_

61

ALMEMO<sup>®</sup> 5690-2CPU

In the input window all the abbreviations listed in the following table appear one after the other : **1 RANGE FECO** 

and an appropriate help window for identifying the sensors

Connector ZA 9021FSL

ThermocouPle type L -200.0 ... 900.0 °C

| Sensor / transducer             | Connector /    | Measuring range | Units | Display |
|---------------------------------|----------------|-----------------|-------|---------|
|                                 | cable / sensor |                 |       |         |
| Pt100-1 ITS90                   | ZA 9000-FS     | -200.0 +850.0   | °C    | P104    |
| Pt100-2 ITS90                   | ZA 9000-FS     | -200.00+400.00  | °C    | P204    |
| Pt1000-1 ITS90 (Element flag 1) | ZA 9000-FS     | -200.0 +850.0   | °C    | P104    |
| Pt1000-2 ITS90 (Element flag 1) | ZA 9000-FS     | -200.00+400.00  | °C    | P204    |
| Pt1000-3 ITS90                  | ZA 9000-FS     | 0.000+65.000    | °C    | P304    |
| Ni100                           | ZA 9000-FS     | -60.0 +240.0    | °C    | N104    |
| NiCr-Ni (K) ITS90               | ZA 9020-FS     | -200.0+1370.0   | °C    | NiCr    |
| NiCr-Ni (K) ITS90 **            | ZA 9020-SS2    | -100.00+500.00  | °C    | NiC2    |
| NiCroSil-NiSil (N) ITS90        | ZA 9020-FS     | -200.0+1300.0   | °C    | NiSi    |
| Fe-CuNi (L)                     | ZA 9021-FSL    | -200.0 +900.0   | °C    | FeCo    |
| Fe-CuNi (J) ITS90               | ZA 9021-FSJ    | -200.0+1000.0   | °C    | IrCo    |
| Cu-CuNi (U)                     | ZA 9000-FS     | -200.0 +600.0   | °C    | CuCo    |
| Cu-CuNi (T) ITS90               | ZA 9021-FST    | -200.0 +400.0   | °C    | СоСо    |
| PtRh10-Pt (S) ITS90             | ZA 9000-FS     | 0.0+1760.0      | °C    | Pt10    |
| PtRh13-Pt (R) ITS90             | ZA 9000-FS     | 0.0+1760.0      | °C    | Pt13    |
| PtRh30-PtRh6 (B) ITS90          | ZA 9000-FS     | +400.0+1800.0   | °C    | EL18    |
| Au-FeCr                         | ZA 9000-FS     | -270.0 +60.0    | °C    | AuFe    |
| W5Re-W26Re (C) **               | ZA 9000-SSC    | 0.0+2320.0      | °C    | WR26    |
| NTC type N                      | ZA 9000-FS     | -30.00+125.00   | °C    | NTC     |
| NTC type N **                   | ZA 9040-SS3    | 0.000+45.000    | °C    | NTC3    |
| PTC type Kty84 **               | ZA 9040-SS4    | -0.0+200.0      | °C    | KTY     |
| Millivolt 1                     | ZA 9000-FS     | -26.000+26.000  | mV    | mV 1    |
| Millivolt                       | ZA 9000-FS     | -10.000+55.000  | mV    | mV      |
| Millivolt 2                     | ZA 9000-FS     | -260.00+260.00  | mV    | mV 2    |
| Volts                           | ZA 9000-FS     | -2.6000+2.6000  | V     | Volts   |
| Difference - millivolt 1        | ZA 9000-FS     | -26.000+26.000  | mV    | D 26    |
| Difference - millivolt          | ZA 9000-FS     | -10.000+55.000  | mV    | D 55    |
| Difference - millivolt 2        | ZA 9000-FS     | -260.00+260.00  | mV    | D260    |
| Difference - volt               | ZA 9000-FS     | -2.6000+2.6000  | V     | D2.6    |
| Sensor voltage                  | any            | 0.0020.00       | V     | Batt    |
| Milliampere                     | ZA 9601-FS     | -32.000+32.000  | mA    | mA      |
| Percent (4 to 20 mA)            | ZA 9001-FS     | 0.00 100.00     | %     | %       |
| Ohms                            | ZA 9000-FS     | 0.00 400.00     | Ω     | Ohms    |
| Ohms **                         | ZA 9003-SS3    | 0.000 50.000    | Ω     | Ohm1    |
| Frequency                       | ZA 9909-AK     | 0 25000         | Hz    | Freq    |

| Sensor / transducer                      | Connector /    | Measuring range | Units  | Display |
|------------------------------------------|----------------|-----------------|--------|---------|
|                                          | cable / sensor |                 |        |         |
| Pulses                                   | ZA 9909-AK     | 0 65000         |        | Pulse   |
| Digital input                            | ZA 9000-EK2    | 0.0 100.0       | %      | Input   |
| Digital interface                        | ZA 9919-AKxx   | -65000 +65000   |        | DIGI    |
| Infrared 1                               | FI A628-1/5    | 0.0 +200.0      | °C     | Ir 1    |
| Infrared 4                               | FI A628-4      | -30.0 +100.0    | °C     | Ir 4    |
| Infrared 6                               | FI A628-6      | 0.0 +500.0      | °C     | Ir 6    |
| Rotating vane, normal 20                 | FV A915-S120   | 0.30 20.00      | m/s    | S120    |
| Rotating vane, normal 40                 | FV A915-S140   | 0.40 40.00      | m/s    | S140    |
| Rotating vane, micro 20                  | FV A915-S220   | 0.50 20.00      | m/s    | S220    |
| Rotating vane, micro 40                  | FV A915-S240   | 0.60 40.00      | m/s    | S240    |
| Rotating vane, macro                     | FV A915-MA1    | 0.10 20.00      | m/s    | L420    |
| Water turbine, micro                     | FV A915-WM1    | 0.00 5.00       | m/s    | L605    |
| Dyn. pressure, 40 m/s with TC and PC     | FD A612-M1     | 0.50 40.00      | m/s    | L840    |
| Dyn. pressure, 90 m/s with TC and PC     | FD A612-M6     | 1.00 90.00      | m/s    | L890    |
| Flow sensor SS20 **                      | ZA9602-SSS     | 0.50 20.00      | m/s    | L920    |
| Rel. atmospheric humidity, capacitive    | FH A646        | 0.0 100.0       | %Н     | °₀ rH   |
| Rel. atm. humidity, capacitive, with TC  | FH A646-C      | 0.0 100.0       | %H     | HcrH    |
| Rel. atm. humidity, capacitive, with TC  | FH A646-R      | 0.0 100.0       | %H     | H rH    |
| Humid temperature HT                     | FN A846        | -30.00+125.00   | °C     | P HT    |
| Conductivity probe with TC               | FY A641-LF     | 0.020.000       | mS     | LF      |
| CO <sub>2</sub> sensor                   | FY A600-CO2    | 0.0 2.500       | %      | C02     |
| O <sub>2</sub> saturation with TC and PC | FY A640-O2     | 0 260           | %      | 02-S    |
| O <sub>2</sub> concentration with TC     | FY A640-O2     | 0 40.0          | mg/l   | 02-C    |
| Function channels (see 10                | ).3.10)        |                 |        |         |
| * Mixture ratio, with PC                 | FH A646        | 0.0 500.0       | g/kg   | H AH    |
| * Dew-point temperature                  | FH A646        | -25.0 100.0     | °Č     | H DT    |
| * Partial vapor pressure                 | FH A646        | 0.01050.0       | mbar   | H VP    |
| * Enthalpy with PC                       | FH A646        | 0.0 400.0       | kJ/kg  | H En    |
| * Rel. humidity, psychrometric, with PC  | FN A846        | 0.0 100.0       | %H     | P RH    |
| * Mixture ratio, with PC                 | FN A846        | 0.0 500.0       | g/kg   | P AH    |
| * Dew-point temperature, with PC         | FN A846        | -25.0 +100.0    | °C     | P DT    |
| * Partial vapor pressure, with PC        | FN A846        | 0.01050.0       | mbar   | P VP    |
| * Enthalpy with PC                       | FN A846        | 0.0 400.0       | kJ/kg  | P En    |
| Measured value (Mb1)                     | any            |                 | f(Mb1) | Meas    |
| Difference (Mb1 - Mb2)                   | any            |                 | f(Mb1) | Diff    |
| Maximum value (Mb1)                      | any            |                 | f(Mb1) | Max     |
| Minimum value (Mb1)                      | any            |                 | f(Mb1) | Min     |
| Average value over time (Mb1)            | any            |                 | f(Mb1) | M(t)    |
| Number of values averaged (Mb1)          | any            |                 | /      | n(t)    |
| Average value, meas. points (Mb2Mb1)     | any            |                 | f(Mb1) | M(n)    |
| Total from measuring points (Mb2Mb1)     | any            |                 | f(Mb1) | S(n)    |

#### 10. Programming via the programming menus

| Sensor / transducer                          | Connector /    | Measuring range    | Units | Display |
|----------------------------------------------|----------------|--------------------|-------|---------|
|                                              | cable / sensor |                    |       |         |
| Total number of pulses (Mb1)                 | ZA 9909-AK     | Man. 6.7.1 065000  |       | S(t)    |
| Number of pulses / print cycle (Mb1)         | ZA 9909-AK     | Man 6.7.1 065000   |       | S(P)    |
| Alarm value (Mb1)                            | any            | (see 10.4.5) 0/100 | %     | Alarm   |
| Thermal coefficient $\overline{q}/(M01-M00)$ | ZA 9000-FS     | (see 9.6.1)        | W/m²K | q/dT    |
| Wet bulb globe temperature (WBGT)            | ZA 9000-FS     | (see 9.6.2)        | °C    | WBGT    |
| Cold junction temperature                    | any            | (see 9.2.7)        | °C    | CJ      |
| Volume flow m <sup>3</sup> /h Mb1 · Q        | any            | (see 9.4.9)        | m³/h  | Flow    |
| Timer                                        | any            | (s9.4.6) 065000    | s     | Time    |
| Temperature, refrigerant R22 °               | FDA602Lx       | -90.0+79.0         | °C    | R22     |
| Temperature, refrigerant R23 °               | FDA602Lx       | -100.0+26.0        | °C    | R23     |
| Temperature, refrigerant R134a °             | FDA602Lx       | -75.0+101.0        | °C    | R134    |
| Temperature, refrigerant R404a °             | FDA602Lx       | -60.0+65.0         | °C    | R404    |
| Temperature, refrigerant R407c °             | FDA602Lx       | -50.0+86.0         | °C    | R407    |
| Temperature, refrigerant R410 °              | FDA602Lx       | -70.0+70.0         | °C    | R410    |
| Temperature, refrigerant R417a °             | FDA602Lx       | -50.0+70.0         | °C    | R417    |
| Temperature, refrigerant R507 °              | FDA602Lx       | -70.0+70.0         | °C    | R507    |

TC = temperature compensation, PC = pressure compensation, Mbx = reference channels

\* Humidity variables (Mb1 = temperature, Mb2 = humidity / humid temperature)

\*\* Only via special connectors with internal characteristic (see 10.3.11, others by request)

° 8 measuring ranges for refrigerants - only with device option R (Mb1 = pressure in mbar)

# 10.3.10 Function channels

At the end of the table of measuring ranges and units (see above) under the subheading **function channels** there is a group of ranges that can be used to represent function parameters for measured value processing or for calculated results obtained by linking certain measured values on measuring channels (see Manual 6.3.4). Reference to the actual measuring channels is provided by one or two reference channels. For all function channels there are preferred channels on the appropriate connector; reference channel programming is not required because these values are referred to by default reference channels Mb1 and Mb2.



Function channels and reference channels must be arranged in a hundreds group.

| Function                            | Function channel         | Reference channel 1 | Reference chan. 2 |
|-------------------------------------|--------------------------|---------------------|-------------------|
| * Humidity variables, capacitive    | on channel 3 or 4        | Mb1 = temperature   | Mb2 = humidity    |
| * Humidity variables, psychrometric | on channel 3 or 4        | Mb1 = Dry temp.     | Mb2 = Humid temp. |
| Function parameter (Mb1)            | on channel 2, 3, or 4    | Mb1 = channel 1     |                   |
| Difference (Mb1 - Mb2)              | on channel 2, 3, 4 (Mb1) | Mb1 = channel 1     | Mb2=M00           |
| Average value over Mb2Mb1           | on channel 2, 3, 4 (Mb1) | Mb1 = channel 1     | Mb2=M00           |
| Total value of Mb2Mb1               | on channel 2, 3, 4 (Mb1) | Mb1 = channel 1     | Mb2=M00           |
| <u>q</u> /(M01–M00)                 | on channel 2, 3, 4 (q)   | Mb1 = channel 1     | Mb2=M11           |
| WBGT                                | on channel 2 (GT)        | Mb1 = channel 1     | Mb2=M00           |

#### Arrangement of channels on the connectors

Once the range has been programmed the default reference channels can be used (see above). Settings for the reference channels are described in Section 10.4.6. The best approach is to use the **function channels** wizard.



#### 10.3.11 Special measuring ranges, linearization, multi-point calibration

Thanks to the new ALMEMO<sup>®</sup> special connectors with extra memory for additional data (bigger EEPROM, code E4) the following tasks can now be performed for the first time with great elegance :

1. Provision of special measuring ranges with internal characteristic (see 10.3.9)

- 2. User-defined linearization of non-linear signals for voltage, current, resistance, or frequency characteristics
- 3. Multi-point adjustment of all sensors

4. Serial number and calibration data management in the sensor

The 5690-2CPU system can, as a standard feature evaluate all appropriately programmed connectors on all selector switch boards. **Multi-point adjustment** of temperature sensors or pressure sensors can be performed as part of a factory or DKD calibration (KA9001DW) (DKD = Deutscher Kalibrier-Dienst = German calibration service). With option KL you can also, using the AMR-Control software, program a characteristic of up to 35 support values in the EEPROM on the ALMEMO<sup>®</sup> connector. During a measuring operation the measured values between these are interpolated on a linear basis. When correcting non-linear sensors (e.g. with Pt100 or thermocouple sensors) initially the original characteristics are considered; only then are the deviations interpolated on a linear basis and inserted.

**Code** for special linearization / calibration Designation with '!' **TemPeratu!** If a channel with a characteristic is deactivated or programmed with a different range, the characteristic can subsequently be reactivated by programming the special range 'Lin' using the keypad or command 'B99'.

Other information that can be entered in the extended connector includes the order number, the serial number, the date of the next calibration, and the calibration interval. In internetworked systems this permits automatic monitoring of the calibration intervals; (see Manual 7.4.4).

# **10.4 Special functions**

On the 5690-2 data acquisition system all AL-MEMO<sup>®</sup> special functions can be accessed via a special menu; these special functions may be needed only occasionally in routine operation but may be very useful in many applications (see Manual 6.10). Some of these functions are highly complex and should only be used if you are fully aware of how they work and what effect they have.

# 10.4.1 Print cycle factor

To adapt data recording to the speed of change at individual measuring points a print cycle factor can be programmed to between 00 and 99; this will cause certain measuring points to be output less frequently or not at all (see Manual 6.10.6). This print cycle factor is by default completely disabled or set to 01 for all measuring points; i.e. all activated measuring points are output in each cycle. If some other factor e.g. 10 is entered, the measuring point in question will only be output every 10th cycle; if 00 is entered it will not be output at all. With data saving similarly it is possible to suppress measured values that are unnecessary and to thus save on memory capacity. With cyclic functions (e.g. averaging) larger superordinate cycles can thus be implemented.

Enter print cycle factor (see 8.5) in function Clear print cycle factor by pressing

#### Print cycle factor : 01 <CLEAR>

# 10.4.2 Sensor supply voltage, minimum

As with all ALMEMO<sup>®</sup> devices the sensor supply voltage on this device is monitored. The sensor supply voltage is displayed in the **Power supPly** menu (see 10.7). Some sensors, to operate properly, need their own supply voltage and this must be provided by a rechargeable battery or via a mains unit. To prevent measuring errors the minimum sensor voltage needed by each individual sensor can be entered in the **Special functions** menu. If the voltage drops below this value the measured value will be treated as a sensor breakage (display 'L' flashes).

To enter the minimum sensor supply voltage To disable voltage monitoring, to clear the value

# Sensor voltage, min : 12.0 V CLEAR>

Sensor voltage, min 🛛 ---- V

| * SPECIAL FUNCTIONS *                   |
|-----------------------------------------|
| Connector 0 Channel 11                  |
| Sensor voltage, mini 12.0 V             |
| 7 Action - maximum Start R1             |
| 6 Analog start 0.0 °C                   |
| 6 Analog end 300.0 °C                   |
| 1 Reference channel 1 (01)              |
| 1 MultiPlexer (B-A)<br>Flement flags IR |
| Calibration offset -12345               |
| Calibration factor 43210                |
| M PRINT ESC                             |

# 10.4.3 Actions in the event of a limit value being exceeded Relay assignment

Alarms in the event of a limit value being exceeded can be reported internally by the two relays, or externally by alarm relay cables, or by the new V6 relay adapters. These relays can be configured individually - as total alarm or separately as maximum / minimum alarm - or they can have individual limit values assigned to them (see 10.6).

If disturbances need to be selectively detected and evaluated, one can simply specify the limit values in the wizard **Limit value alarm** and assign these to individual relays; (see Manual 6.10.8). It is also possible to have a number of limit values assigned to the same relay. If the relay adapter is connected the corresponding relay will automatically be set to variant 2 (Assigned internally). If not, it must be configured to this variant later. LIMIT VALUE ALARM Select measuring channel MO: 216.7 °C Limit value, max 350.0 °C Relay : 40 100.090 Limit value, min Relay 41 Port 40 Socket Â4 Relay, NO 0.5 A 2: Assigned internally State: Active closed MV P PRINT ESC

Or alternatively in the programming menu **SPecial functions** there are the functions **Action – Max**, **Action – Min**.

To activate relay "xx" in the event of overshooting limit value **7 Action, max** ----- **xx** maximum

To activate relay "yy" in the event of undershooting limit value **7 Action, min** -----

To clear relay assignment press

<CLEAR>

 The relay configuration can be checked in menu
 OutPut modules.

 Set port 20 on socket A2
 Port 20
 Socket A2

 a normally open semiconductor relay
 Relay Normally open, 0.5 A

 to variant 2 (relay assigned internally)
 2: assigned internally

### Controlling a measuring operation

The exceeding of a limit value can be used not only for reporting an alarm but also for controlling a measuring operation (see Manual 6.6.3). Commands can be assigned to a limit value by means of the functions :

| Action Max and Action Min                                   |                            | Rxx |
|-------------------------------------------------------------|----------------------------|-----|
| Start measuring operation at limit value, maximum           | 7 Action, max Stari        |     |
| Stop measuring operation at limit value, minimum            | 7 Action, min Stop         |     |
| Manual inquiry at limit value, maximum                      | 7 Action, max Manu         |     |
| Zero-set timer 0.1s at limit value, maximum                 | 7 Action, max <b>TZerc</b> |     |
| Execute macro 5 to 9 at max. limit value (s. Man.I 6.6.5) : | 7 Action, max Macro 5      |     |
| To clear action press                                       | <clear></clear>            |     |
|                                                             |                            |     |

### 10.4.4 Analog output start / end

The analog output of measured values to the analog output modules (see Manual Ch 5) or to the display as bar chart or line graph must in most cases be scaled to a particular sub-range. You can do this by simply stipulating the start value and end value of the range you want displayed. This range will then be mapped to the analog range 2 V, 10 V, 20 mA or for the display with 100 pixels.

| To program the analog output start : : | 6 Analog start : : | 0.0 °C  |
|----------------------------------------|--------------------|---------|
| To program the analog output end       | 6 Analog end:      | 100.0°C |

These two parameters, "analog output start" and "analog output end", are also saved in the sensor EEPROM and can thus be individually programmed for each channel; i.e. when channels are switched through manually each measurable variable can be individually scaled.

The flag for switching over from 0 - 20 mA to 4 - 20 mA is programmed via the element flags (see 10.4.8).

All parameters are best programmed when configuring the analog output (see 10.6.2).

# 10.4.5 Output function

If the current measured value is not actually needed but only the maximum, minimum, average, or alarm value, this function can be programmed as output function (see Manual 6.10.4). Saving, analog output, and digital output will then only process the appropriate function value. As verification for the output function being thus changed the measured value is displayed with the status symbol shown below (see 8.2).

#### Examples

- 1. If measured values are being averaged over the cycle the only output value of interest is the average value itself, not the last measured value. With a data logger this saves memory capacity.
- The analog measured value from dew sensor FH A946-1 is not really significant. If limit value maximum is set to approx. 0.5 V and the alarm value function is programmed, the only values received are 0.0% for dry and 100.0% for dew.

| Output function<br>Measured value<br>Difference<br>Maximum value<br>Minimum value<br>Average value | Status symbol<br>D<br>H<br>L<br>M | Menu<br>OutPut function<br>OutPut function<br>OutPut function<br>OutPut function<br>OutPut function | Meas<br>Diff<br>Max<br>Min<br>M(t) |
|----------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|
| Average value<br>Alarm value                                                                       | A                                 | OutPut function                                                                                     | Alarm                              |

TR Bridge Cyclic. Iso OFF Flag 6 Br OFF A 4-20

-10

# 10.4.6 Reference channel 1

The calculating functions of the function channels usually refer to one (or two) particular measuring channel(s) (see 10.3.10, Manual 6.3.4). When programming a function channel the reference channel Mb1 is provided automatically by the 1st channel of the associated sensor connector Mxx<sub>1</sub>. The 2nd reference channel Mb2 (for differential value, average value M(n), etc.) is provided initially by measuring point M00. In the function **Reference channel 1** you can also set another measuring point as reference channel - either one specified measuring point or an unspecified measuring point chosen according to the distance relative to the function channel (where -01 is the channel in front of the function channel). 1 Reference channel 1 01

Programming reference channel 1, absolute Programming reference channel 1. relative

# 10.4.7 Reference channel 2 or multiplexer

With those function channels needing a 2nd reference channel (see above) **Reference channel 1** is followed automatically by the function **Reference** channel 2. In all other cases the **MultiPlexer** function can be used to change the input multiplexer and thus the pin assignment in the connector (see Manual 6.10.2).

Programming reference channel 2, absolute Programming reference channel 2, relative

Meas. inputs B+ and A-, with respect to ground Meas. inputs C+ and A-, with respect to ground Meas, inputs D+ and A-, with respect to ground Differential measuring inputs C+ and B-Differential measuring inputs D+ and B-

10.4.8 Element flags

Element flags are available per measuring channel; these can be activated to implement sensor-specific extra functions (see Manual 6.10.3). I 1/10

| Measuring current 1/10 for Pt1000, 5000 $\Omega$ :      | Element | fla9s |  |
|---------------------------------------------------------|---------|-------|--|
| (Flag 2:) *                                             | Element | fla9s |  |
| Measuring bridge with switch for final-value simulation | Element | flags |  |
| Digital channel, cyclic evaluation only                 | Element | flags |  |
| To deactivate electrical isolation (see 7.4)            | Element | flags |  |
| (Flag 6:) *                                             | Element | flags |  |
| To deactivate sensor breakage detection                 | Element | flags |  |
| To switch analog output from 0-20 mA to 4-20 mA         | Element | fla9s |  |

\* With the ALMEMO 5690-2C this element flag has no significance.

- 1 Reference channel 2 00
- -01 1 Reference channel 2
- 8 A 1 MultiPlexer C - A

1 Reference channel 1

- 1 MultiPlexer D - A 1 MultiPlexer
- 1 MultiPlexer C - B
- 0 B
- 1 MultiPlexer

# 10.5 Device configuration

In the **DEVICE CONFIGURATION** menu certain basic settings can be made. The device designation can be used as print header in a log printout or to facilitate assignment in a network. In network operation the device address is indispensable. The baud rate can be adapted for interoperation with external devices. The display illumination can be set to any one of three levels. The atmospheric pressure setting can be adjusted to compensate certain sensors in particular at different altitudes. The default value for hysteresis for alarm relays can also be modified. The number of channels and the cold junction temperature are displayed for the purposes of device monitoring.

### 10.5.1 Device designation

In the **device designation FUNCTION** (see Manual 6.2.4) you can enter any text up to maximum 40 characters in length (see 8.5). This text will then appear in the main menu, in the print header for a measuring operation, and in device lists (software). Function **Device designation** : **Device designation** 

#### Ahlborn, Holzkirchen

### 10.5.2 Device address and networking

All ALMEMO<sup>®</sup> devices can be networked together very easily thus enabling the user to centrally acquire and record measured values from several measuring instruments - even if these are located far apart (see Manual 5.3). To communicate with networked devices it is absolutely essential that all the devices concerned should have the same baud rate setting but that each have its own dedicated address; this is because only one device should respond per command. Before starting network operation ensure therefore that all the measuring instruments involved are assigned different device addresses. The device address for this system is set by means of a **code switch** (5b) located on the rear of the device.

The **Device** function in the **DEVICE CONFIGURATION** menu displays the device address setting, then the device type and version number, and then if applicable an option code (see Manual 6.10.11).

Device address with type, version, option Device 00 5690-2C U:6.05XM

*Example* Address 00, Type 5690-2, Version 6.05, Option XM



With option XU or XM permitting up to 250 measuring channels the system occupies altogether three device addresses. The start address of the CPU must not be higher than value 7. It is important to remember this when setting the addresses for subsequent devices. The measuring point hundreds groups must each be programmed and scanned just like separate devices (except for the purposes of memory output).



# 10.5.3 Baud rate, Data format

On leaving the factory the baud rate for all interface modules is programmed to 9600 baud. In order to avoid unnecessary problems when networking several devices together the baud rate should not be altered; rather the computer or printer should be set to match. If this is for some reason not possible you can, in the **Baud rate** function, enter the values 1200, 2400, 4800, 9600 baud or 57.6, 115.2 kbaud (paying attention not to exceed the maximum baud rate for the interface module). The baud rate setting is saved in the EEPROM on the interface module and thus applies when used with any other ALMEMO device. Function **Baud rate**: **Baud rate 9600 baud** 

Data format: Cannot be changed 8 data bits, 1 stop bit, no parity

# 10.5.4 Language

The user can choose between German / English / French as the interface language in which the functions are labeled in the display; (other languages are also available as options). The soft-keys are international; these cannot be changed. If German is not set as the language outputs via the interface will appear in English.

To select the language go to the Language function (see 8.5): Language German

# 10.5.5 Illumination and contrast

Display illumination can be enabled in the selection menus by pressing **C**: **IN**; it can be disabled or set to any one of three levels in device configuration with the **Illumination** function; (please note : illumination level 3 more than doubles the power consumption). If display illumination is switched on but no mains adapter is connected, the backlighting will go out again automatically after a settable illumination duration starting as soon as the current key operation has been completed (pause) and will go on again as soon as any key is pressed. The **Contrast** function can be used to set the contrast of the display to any one of 10 levels.

To switch display illumination on at level 1 to 3 :

To switch display illumination OFF (level 0) :

To enter illumination duration, 20 seconds to 10 minutes : If display illumination is switched on,

the status bar will display the symbol :

If display illumination is temporarily disabled,

the status bar will display :

To switch back ON again without this function press

Set the contrast (10 to 100%) see 8.5:

Illumination level: 2 Illumination level : 0 Illumination duration : 20s

Illumination ON

\* rest



### **10.5.6 Atmospheric pressure**

The atmospheric pressure can be set to compensate certain sensors (see 9.2.6). If atmospheric pressure is measured it will appear in this function.

Enter atmospheric pressure in the function Atmospheric pressure : Atmo+ sPheric Pressure : CP. 1013 mbar

### 10.5.7 Hysteresis

The hysteresis for an alarm triggered in the event of a limit value being exceeded can be set generally for all sensors from 0 to 99 digits (default 10 digits) in the Hysteresis function (see 10.3.5 and Manual 6.2.7). 10 Hysteresis : To modify hysteresis (0 ... 99) see 8.5:

### 10.5.8 Operating parameters

Certain operating parameters can be configured by the user as software options in the **Configuration** function (see Manual 6.10.13.2). Mains frequency noise suppression 60 Hz instead of 50 HzConfiguration F-

Delete all meas, values at the start of a meas, operation Ring memory (values are overwritten if memory full)

Immediate output via the interface, oversampling Switch signal transmitter OFF

Configuration -C-----Configuration --R-----Configuration ----A----Configuration ----S--

The following parameters can be used to check proper device functioning : Meas, channels :60 active:25 Of 60 possible channels 25 are activated : Sensor voltage :11.7 U Sensor supply voltage 11.7 V = mains operation : CJ temPerature : 25.4°C

Cold junction temperature : = socket temperature :

# 10.6 Output modules

The CPU system 5690-2CPU provides not only the usual output sockets A1 and A2 for data cables, network cables, and output modules (see Manual Ch 5) but also 4 additional sockets A3, A4, A5, and P0 (5d), so that the many possibilities of the ALMEMO® periphery can all be used simultaneously. For this purpose socket P0 has two integrated elements as option and new V6 output modules with which each element (relay, trigger input, or analog output) can be individually configured in all function variants. To ensure that all elements are addressed, each of these sockets has been assigned 10 port addresses pp.

| Socket | Connection                                               | Port     |
|--------|----------------------------------------------------------|----------|
| P0     | internal elements (relay, trigger, or analog output)     | 00 to 09 |
| A1     | V5 output cables or V6 output modules                    | 1019     |
| A2     | V5 output cables or V6 output modules                    | 2029     |
| A3     | V6 output modules (relay, trigger, analog output)        | 3039     |
| A4     | V6 output modules (relay, trigger, analog output)        | 4049     |
| A5     | V6 output modules (relay, trigger, analog output)        | 5059     |
| B6     | V6 plug-in output module (relay, trigger, analog output) | 6069 :   |
When using V5 and V6 output modules please note the following :

- All old output cables (V5) can only be used at sockets A1, A2 and using the old protocol.
- However, old output cables (V5) can be recoded to the V6 format.
- V6 output cables can be used on all sockets A1 to A5.
- Only V6 trigger cables can be used to execute command macros. (Man. 6.6.5)
- For internal elements only a clamp connector (ZA 1000-KS) is needed.

The V6 output modules can be configured comprehensively; new commands are available. see Manual 6.10.9.2.

All output modules, just like the sensors themselves, are recognized automatically and listed in the menu **OUTPUT MODULES**.

With the relay trigger analog modules certain function variants can be configured (see 10.6.2Fehler: Referenz nicht gefunden), relays can have certain limit values assigned to them (see 6.5), or analog outputs can be assigned to certain measuring channels. In this menu all ports can be selected and configured accordingly. The connection possibilities are described in the instructions for the output module concerned.

| *                              | OUTPUT M                                    | ODULES                | * |
|--------------------------------|---------------------------------------------|-----------------------|---|
| Socke                          | t Al                                        |                       |   |
| DK Da<br>0: RS2<br>Baud i      | ta cable<br>232<br>′ate                     | 9600 B                | d |
| Socke<br>I/O tr<br>2: R×<br>Re | t A2<br>rigger alar<br>: assigned<br>lay 01 | m<br>I internally<br> |   |
| Analos<br>Analos               | i channei<br>I value                        | 00<br>+32500          |   |
|                                | Р                                           | PRINT ESO             |   |

### 10.6.1 Data cables

Via the serial interface you can output cyclic data logs, all the function values from the measuring menus, and all the programming details for the device and for the sensors to a printer or computer. All ALMEMO<sup>®</sup> data cables (e.g. RS-232, RS-422, optic fiber, USB, Ethernet, Bluetooth, etc.) and the various connections to the devices are described in the Manual Section 5.2. Other modules for networking the devices are described in detail in the Manual, Section 5.3. All available interface modules are connected to socket A1 (5d); this is with the exception of cable ZA 1999-NK which is used for networking a further device; this must be connected to socket A2.

In the menu under the socket concerned the following information is displayed :

Variant 0 Serial standard interface always active The baud rate is saved in the cable connector : Socket : A1 DK Data cable 0: RS232 Baud rate 9600 baud

## 10.6.2 Relay trigger adapter, analog

The combined input and output cables (ZA 1000-EAK) and the relay trigger analog adapter ZA 8000-RTA (see Manual 5.1.2 / 5.1.3) provide up to maxim-

um four switch contacts for driving peripheral equipment and one trigger input (see Manual 6.6.4). These V5 output modules are connected to output socket A2 (5d); their functions can only be programmed collectively per type for all elements (see Manual 6.10.9).

V6 output modules are either V5 output modules with a V6 configuration (ZA 1006-EAK) or new modules with up to 10 elements (ZA 8006-RTA3) or as option two elements integrated in the measuring instrument. In the **DUT+PUT MODULES** menu all elements can be accessed individually and their function variants programmed.

First **select the socket and port** by pressing : e.g. port 0, at socket A2 (port address 20)

This shows the element concerned.

### 1. Relay

Relay type = NO (normally open) Relay type = NC (normally closed) Relay type = changeover:

The relay switching mode can be configured to the following variants (see 8.5)

0: Alarm if any one channel of all channels is faulty

2: Alarm for a programmed channel

- 3: Alarm, if one limit value maximum of all is overshot
- 4: Alarm, if one limit value minimum of all is undershot
- 8: Relay driven via interface or keypad

Variant 2 'Assigned internally' also requires the **assignment - relay to limit values** (see 10.4.3).

For the purposes of **detecting power failure** it is an advantage if relays are driven on an inverted basis because in the absence of current an alarm status applies automatically. The function variants are therefore also provided on an inverted basis.

### Inverted relay control :

e.g. variant 2 inverted :

The **activation mode** and **actual contact status** resulting from the relay type and driving mode are displayed in the next line.

Activation mode and relay contact status : Status : active oPen

| al         | * OUTPUT MODULES *                                     |
|------------|--------------------------------------------------------|
| C-         | Socket A2 ZA 8006RTA3                                  |
| าร         | Port 0 Address 20                                      |
| e          | 2: Relay, driven externally<br>Status : active, closed |
| -t         |                                                        |
| or         |                                                        |
| A          |                                                        |
| <b>g</b> - |                                                        |
| <b>`+</b>  |                                                        |
| C-         | R ON ROFF P PRINT ESC                                  |



- Relay Normally open
- Relay Normally closed
- Relay Changeover
- 0: Summated alarm
- 2: Assigned internally
- 3: Summated alarm max
- 4: Summated alarm min
- 8: Driven externally

-2: Assigned internally - Inverted

**Relay variant 8 "Driven externally"** permits manual activation of the relays via the keypad or via the interface; (see Manual 6.10.10).

Relay variant 8

For manual activation of relays press

## 2. Trigger inputs

The following trigger functions can be programmed as function variants.

- 0: Start and stop a measuring operation
- 1: Once-only manual measuring point scan
- 2: Clear all maximum / minimum values
- 3: Print
- 4: Start/stop a meas. operation on level-controlled basis
- 8: Set measured value to zero
- -5: Execute macro 5
- -6: Execute macro 6
- -7: Execute macro 7
- -8: Execute macro 8
- -9: Execute macro 9

## 3. Analog outputs

For the purposes of analog recording of measured values it is still possible, at sockets A1 and / or A2 (2) to connect V5 output modules with an analog output, e.g. recording cable ZA-1601-RK (see Manual 5.1.1).

The new V6 relay trigger analog adapter ZA-8006-RTA3 (see Manual 5.1.3) offers, at ports 4 to 7, the option of up to four separately configurable external analog outputs.

New analog modules with high-speed D/A converters can be reprogrammed from 'Analog external DAC 0-10 V' to 'Analog external DAC 20 mA'.

Analog outputs are available with the following output signals :

| Analog, internal 2 V       | (PWM in device) |
|----------------------------|-----------------|
| Analog, internal 10V       | (PWM in device) |
| Analog, internal 20mA      | (PWM in module) |
| Analog, external 10V       | (PWM in module) |
| Analog, external 20 mA     | (PWM in module) |
| Analog, external DAC 10 V  | (DAC in module) |
| Analog, external DAC 20 mA | (DAC in module) |
|                            |                 |

### To select socket and port press

- 0: Start / stop
- 1: Once-only scan
- 2: Delete max/min values

8: Driven externally

- 3: Print
- 4: Start/stop, level-controlled
- 8: Set meas, value to zero
- -5: Macro 5
- -6: Macro 6
- -7: Macro 7
- -8: Macro 8
- -9: Macro 9

| * OUTPUT MODUL                                                   | .ES *                          |
|------------------------------------------------------------------|--------------------------------|
| ZA 8006-RTA3 So                                                  | cket A4                        |
| Port 6 Ac<br>Analog, external, 20<br>2: Assigned internal<br>802 | ldress 46<br>  mA<br> Y        |
| Analog value                                                     | 6.456 mA                       |
| 02: 16.7 °C Tem                                                  | Perature                       |
| Scaling<br>6 Analog start<br>6 Analog end<br>Current outPut 4    | 0.0 °C<br>300.0 °C<br>to 20 mA |
| ON OFF P PRI                                                     | NT ESC                         |

| -1.2 +2.00 V  | 0.1 mV / digit |
|---------------|----------------|
| -4.0 +10.0 V  | 0.am / digit   |
| 0.020.0 mA    | 1µA / digit    |
| -4.0 +10.0 V  | 0.am / digit   |
| 0.020.0 mA    | 1 µA / digit   |
| -4.0 +10.0 V  | 0.5 mV / digit |
| 0.020.0 mA    | 1 µA / digit   |
| <p>: 🔺 or</p> | V              |

### The following output modes can be programmed as variants :

- 0: Measured value for the selected measuring channel 0: Selected meas. chan. M00
- 2: Measured value for a programmed channel 8: Programmed analog output (see below)
- 2: Assigned internally B01 8: Driven externally Analog value 12,456 mA

Below this appears the **analog value** 

The **measured value for the selected measuring channel** Mxx is output in variant 0. This setting together with a semi-continuous measuring rate (see 10.1.3) is the most suitable because in this way the analog output will be processed most frequently.

### Assigning an analog output to a measuring point

In variant 2 'Assigned internally', after selecting the Bxx function, you can program the measuring point to be output. 2: Assigned internally B 02

### Scaling the analog output

In this variant that part of the measuring range assigned to the measuring point concerned and actually being used by the selected channel can, by means of functions **Analog start** and **Analog end** be spread over the full 10 V or 20 mA(see 10.4.4).

**To program the analog output start To program the analog output end** see 8.5 For 20 mA analog outputs only To choose between 0 - 20 mA and 4 - 20 mA output :

| 6 | Analog        | start | 0.0°C   |
|---|---------------|-------|---------|
| 6 | <b>Analog</b> | end   | 300.0°C |

Current outPut : 4-20 mA

### Programmed analog value output (see Manual 6.10.7)

In variant 8 'Driven externally' the analog output value can be programmed.

8: Driven externally Analog value 5.000 mA

## 10.7 Power supply menu

The power supply for the measuring instrument is normally derived from mains adapter ZB 1212-NA6 (12V/3A). There is also the option of using module ES 5690-AP with 8 AA NiMH rechargeable batteries. The power supply menu displays the current battery voltage to help you estimate the battery's remaining operating time. At 10.4 V the battery symbol in the status bar starts to flash and at 8.8 V the device switches off automatically. The current charge status cannot be displayed more exactly than this because of the different types of load.

Display of the supply voltage / battery voltage Display of the actual sensor voltage

| * POWER SUPPLY                    | *                |
|-----------------------------------|------------------|
| Battery voltage<br>Sensor voltage | 10.8 V<br>11.6 V |
|                                   |                  |
|                                   |                  |
|                                   | ESC              |

| Battery voltage | 10.8 L | J |
|-----------------|--------|---|
| Sensor voltage  | 11.6 \ | J |

# 10.8 Locking and calibration menu (option KL)

In the **Locking and calibration** menu you can lock the right-of-access to certain menus and to certain functions. Here you can also see the serial numbers and calibration data for the device itself and for any sensors attached. With option KL it is possible not only to correct the sensor at several points in the connector itself (see 10.3.11) but also to manage the associated calibration data.

The right-of-access to this and certain other menus and to key functions can be stipulated in detail and protected by password. If no password is used and the locking level for the menus (**Menu**) and for the keypad functions (**Fct**) is set to 0, access to all functions will be allowed. The locking levels restricting access to the menus and to the keypad functions are independent of one another; these levels can be selecting separately as listed in the tables below. Having set a locking level this setting can be protected by password.

### **Device locking**

No password, locking with new password: Locked with password, enter correct password Select locking level, menu, and function :

### Menu Locking the menus

- 0 None (calibration menu without option KL)
- 1 Calibration menu, except password
- 2 + programming menus, except recording to memory and output from memory
- 3 + recording to memory and output from memory
- 4 + wizards
- 5 + measuring menus, except user menu U1

### Fct Locking the functions

- 0 none
- 1 Data input, switching on and off
- 2 + clearing measured data
- 3 + start / stop / output measuring operation
- 4 + function selection, measuring point selection

### Version and calibration data management

The device type (with version and serial number) and the sensors (with order number and in some cases serial number) are displayed. With option KL you can enter the date of the next calibration and the calibration interval in months. If 'calibration message' is activated then, as soon as the next calibration is due, a message to this effect will appear when the device is switched on.

| * Locking, cali  | bration*      |
|------------------|---------------|
| Password :       | ****          |
| Locking          | Menu: 0 Fct 0 |
| Device           | 2690-8 6.22   |
| Serial number    | 04020123      |
| Calibration mes  | TE UI.IZ.UD   |
| Canaau           | 00            |
| Type             | FH9646-6      |
| Serial number    | 04020123      |
| Next calibr. da  | te 01.02.06   |
| Calibr. Interval | 12 months     |
|                  | PRINT ESC     |

| Password |       | • |   |   |    |   |
|----------|-------|---|---|---|----|---|
| Password |       | 2 | k | * | ** | k |
| Locking  | Menu: | 0 | F | C | t  | 0 |

and keys

PROG, ON, OFF, ZERO, ADJ CMEM, CLR, CLRA START/STOP, MANU, ARRAY, PRINT PROG, FA, MA

# **11. TROUBLE-SHOOTING**

Data acquisition system ALMEMO 5690-2CPU can be configured and programmed in many versatile ways. It is suitable for connecting a wide variety of very different sensors, additional measuring instruments, alarm signaling devices, and peripheral equipment. Given these numerous possibilities the device may in certain circumstances not behave quite as expected. The cause of such unexpected behavior is only very rarely a device defect; usually the cause is incorrect operation by the user, an invalid setting, or unsuitable cabling. In such event try to pinpoint and clear the problem with the aid of the following tests.

**Error** No display, display malfunction, keys do not react

**Remedy** Check the power supply, charge the battery, switch off and then on again.

If necessary re-initialize (see 6.5).

Error Measured values are incorrect.

**Remedy** Check all the channel programming very carefully, especially the base value and zero-point (sensor programming and special functions menu).

**Error** Fluctuating measured values or the system hangs in mid-operation.

**Remedy** Check the cabling for any inadmissible electrical connections. Unplug any suspicious sensors.

Connect hand-held sensors in air or phantoms and check (thermocouples, short-circuit AB, use  $100\Omega$  for Pt100 sensors).

Connect the sensors again one at a time and check successively.

If a fault persists for any one connection, then check all wiring; if necessary, insulate the sensor and eliminate interference by using shielded or twisted wiring.

**Error** Data transmission via the interface does not function.

**Remedy** Check interface module, connections, and settings.

Are both devices set to the same baud rate and transmission mode (see 10.5.3)?

Is the correct COM interface on the computer being addressed ? Is a printer in the ONLINE status ?

Are the handshake lines DTR and DSR active ?

To check the data flow and the handshake lines a small interface tester with LEDs comes in very handy; (in ready-to-operate status the data lines TXD, RXD carry negative potential of approx. -9V and these LEDs light up green, whereas the handshake lines DSR, DTR, RTS, CTS carry positive voltage of approx. +9V and these LEDs light up red. For the duration of data transmission the data LEDs should flash red.

Check data transmission by means of a terminal (AMR-Control, WIN-Control, WINDOWS-Terminal).

Select output channel interface U using command 'A1',

Address the device using its assigned device number "Gxy" (see Manual 6.2.1).

Enter <ctrl Q> for XON, if the device is in the XOFF status.

Check the programming by means of "P15" (see Manual 6.2.3).

Test the transmit line only by entering a cycle using command 72123456' and check in the display.

Test the receive line by pressing **<PRINT>** and check in the display.

**Error** Data transmission in the network does not function.

**Remedy** Check to ensure that all devices are set to different addresses.

Address all devices individually via the terminal using command "Gxy".

Addressed device is OK if at least "y CR LF" is returned as echo. With option XU or XM 3 addresses are occupied.

If transmission is still not possible, unplug the networked devices.

Check all devices individually on the data cable to the computer; (see above).

Check the wiring for short-circuit or crossed wires.

Are all network distributors supplied with power ?

Network the devices again one at a time and check successively; (see above).

If, after performing the above-listed checks and remedial steps, the device still fails to behave as described in the operating instructions, it must be returned to our factory in Holzkirchen, accompanied by an explanatory note, error description, and if available test printouts. With the AMR-Control software you can print out screen-shots showing the relevant programming and save and / or print out a comprehensive "Function test" in the device list or the terminal.

# **12. ELECTROMAGNETIC COMPATIBILITY**

Data acquisition system ALMEMO 5690-2CPU complies in full with the safety requirements specified in the EU directive relating to electromagnetic compatibility (EMC) (89/336/EWG).

The following standards have been applied in evaluating the product.

| IEC 61326:1997+A1:1998+A2:2000 | )                                         |
|--------------------------------|-------------------------------------------|
| IEC 61000-6-1:1997             | IEC 61000-4-2: 1995+A1:1998+A2:2000 8kV   |
| IEC 61000-6-3:1996             | IEC 61000-4-4: 1995+A1:2000 2kV           |
|                                | IEC 61000-4-3: 1995+A1:1998+A2:2000 10V/m |

The following advisory notes must be observed when operating the device.

- 1. If the standard sensor is extended (1.5 meters) care must be taken to ensure that the measuring lines are not laid together with high-voltage power cables and that, if necessary, they are properly shielded so as to prevent spurious interference being induced in the system.
- 2. Using the device in strong electromagnetic fields may aggravate measuring errors (<50  $\mu$ V at 3 V / m and 1.5 meters thermocouple sensor). After exposure to such irradiation ceases, the device will again operate within its technical specifications.

# **13. APPENDIX**

## 13.1 Technical data

CPU measuring circuit CPU A/D converter

Sensor power supply

Measuring inputs: Selector switch board U-A10:

Selector switch board U-MU:

Selector switch board U-TH:

Selector switch board U-KS:

Option KSU

Option KSI:

### **Option MK:**

Outputs (see 10.6) Socket A1 Socket A2 Socket A3 Socket A4 Socket A5 Socket P0

### Standard equipment :

Display Operation Date and time-of-day Memory, internal Option SF External memory

### Power supply :

Mains adapter Z Rechargeable battery in module AP Current consumption Active mode with lighting 1 (see Manual 2.3 and 2.5)

Delta - sigma, 24-bit, 2.5 / 10 / 50 / 100 mops, adjustable 1 to 100 11.5 V (rechargeable battery 9 to 11.5), current 0.4 A / plug-in module, total 1 A

10 ALMEMO<sup>®</sup> sockets, suitable for ALMEMO<sup>®</sup> connectors 10 channels, electrically isolated, 30 additional channels with sensor power supply, 0.4 A, 2 slots 10 inputs, electrically isolated, via 10x MU connector without sensor power supply, 30 additional channels, 1 slot 10 inputs, electr. isolated, via miniature thermal connector Without sensor power supply, 30 additional channels, 2 slots 10 inputs, electrically isolated, via 2 clamp connectors without sensor power supply, 30 additional channels, 1 slot 10 inputs, electrically isolated, via 2 clamp connectors without sensor power supply, 30 additional channels, 1 slot 10 inputs, A - C, with 100:1 divider Accuracy 0.1 % (22 °C), drift 0.003 % / K 10 inputs, A - B, with shunt, 2 ohms Accuracy 0.1 % (22 °C), drift 0.005 % / K

Dedicated measuring circuit for all selector switch boards

6 ALMEMO<sup>®</sup> sockets suitable for all output modules Data cable, relay-trigger analog modules, V5 and V6 Network cable, relay-trigger analog modules, V5 and V6 Relay-trigger analog modules, V6 only Relay-trigger analog modules, V6 only Relay-trigger analog modules, V6 only Relay-trigger analog modules, integrated (option)

Graphics 128 x 128 pixels, 16 rows of 4 mm 9 keys (4 soft-keys and cursor block) Real-time clock, buffered with lithium battery 2-MB RAM (250000 to 400000 measured values) buffered 2-MB FeRAM, non-volatile Multimedia card, drive, and USB card reader

external 10 to 13 VDC ZB 1212-NA6 230 VAC to 12 VDC, 3 A 8 NiMH AA batteries, 9 to 11 V, 1600 mAh approx. 37 mA (without input / output modules) Level 1 appr. 46 mA, Level 2 appr. 60 mA, Level 3 appr. 75 mA

#### Technical data

Sleep mode Selector switch boards

#### Housing :

19-inch desktop housing, 32 DU 19-inch desktop housing, 84 DU 19-inch sub-rack. 84 DU

#### Suitable conditions :

Operating temperature Ambient relative humidity -10 ... +50 °C Storage temperature -20 ... +60 °C 10 ... 90 % rH (non-condensing)

Order no.

## 13.2 Product overview

#### Data acquisition system ALMEMO® 5690-2CPU

Measuring circuit for 100 measuring points with passive selector switch boards, 6 output sockets, cascadable interface. 9 keys, LCD graphics display, real-time clock, 2-MB RAM, MMC memory, USB card reader, mains adapter 12 V / 3 A in 19-inch desktop housing, 32 DU, 6 slots MA 56902CPUTG3 in 19-inch desktop housing, 84 DU, 19 slots MA 56902CPUTG8 in 19-inch sub-rack. 84 DU. 19 slots MA 56902CPUBT8 **Options :** (\* only 1 option possible) SF: 2-MB FeRAM non-volatile, instead of RAM, buffered OA 5690-SF XU: Supports passive selector switches, up to 190 measuring points, 250 channels OA 5690-XU XM: Supports active selector switches with measuring circuit, up to 250 channels OA 5690-XM SH2: 2 semiconductor relays, normally open, 1 Ω, 0.5 A, 50 V, internal OA 5690-SH2\* TR2: 2 optocoupler trigger inputs, internal OA 5690-TR2\* R22: 2 analog outputs, 10 V, internal OA 5690-R22\* R32: 2 analog outputs, 20 mA, internal OA 5690-R32\* Linearization, multi-point calibration, calibration data management OA 5690-KL KL: R: Measuring ranges for temperature display for 10 refrigerants SB 0000-R2 Additions Rechargeable battery module (8 cells, NiMH, 1600 mAh) ES 5690-AP Selector switch board U-A10 with 10 inputs, electrically isolated for ALMEMO<sup>®</sup> flat connectors. 10 to 40 channels. 2 slots ES 5690-UA10 Selector switch board U-MU with 10 inputs, electrically isolated Sensor connector with 10x MU connector, 10 to 40 channels, 1 slot ES 5690-UMU 10x MU connector for 10 sensors, 10 to 40 channels 7A 5690-MU Selector switch board U-TH with 10 inputs, electrically isolated Sensor connector with thermal connector, 10 to 40 channels, 2 slots ES 5690-UTH Selector switch board U-KS with 10 inputs, electrically isolated Sensor connector with clamp connector, 10 to 40 channels, 1 slot ES 5690-UKS

Passive approx. 5 mA, Active approx. 30 mA

approx. 50 uA

WxHxD 179 x 158 x 232 mm Polystyrene, shielded WxHxD 444 x 158 x 232 mm Polystyrene, shielded WxHxD 483 x 132 x 273 mm

### 13. Appendix

| Option KSU Inputs for 10 V with 100:1 divider<br>Option KSI: Inputs for 20 mA with shunt<br><b>Option with measuring circuit</b> (active selector switch)                                                       | OA 5690-UKSU<br>OA 5690-UKSI              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| for all selector switch boards                                                                                                                                                                                  | OA 5690-M                                 |
| Accessories:                                                                                                                                                                                                    |                                           |
| DC power cable, 10 to 30 VDC, 12 V / 1.25A, electrically isolated ALMEMO <sup>®</sup> data cable with USB interface,                                                                                            | ZB 3090-UK2                               |
| electrically isolated, maximum 115.2 kbaud<br>ALMEMO <sup>®</sup> data cable with V24 interface,                                                                                                                | ZA 1919-DKU                               |
| electrically isolated, maximum 115.2 kbaud                                                                                                                                                                      | ZA 1909-DK5                               |
| ALMEMO <sup>®</sup> network cable, electrically isolated, maximum 115.2 kbaud ALMEMO <sup>®</sup> data cable with Ethernet interface,                                                                           | ZA 1999-NK5                               |
| electrically isolated, maximum 115.2 kbaud                                                                                                                                                                      | ZA 1945-DK                                |
| ALMEMO® V5 recording cable, not electrically isolated, -1.25 to 2.00 V<br>ALMEMO® V6 input / output cable for triggering and limit value alarm<br>ALMEMO® V6 relay-trigger adapter (4 relays, 2 trigger inputs) | ZA 1601-RK<br>ZA 1006-EAK<br>ZA 8006-RTA3 |

|                                                      |                 | Keywords |
|------------------------------------------------------|-----------------|----------|
| 12.2 Kovavordo                                       |                 |          |
|                                                      | 40.0            | 00       |
| Accessories                                          | 13.2            | 82       |
| Action Max and Action Min                            | 10.4.3          | 07<br>67 |
| Actions in the event of a limit value being exceeded | 10.4.3          | 07       |
| activation mode                                      | 10.0.2          | 14       |
| active selector switch boards                        | 1062            | 10       |
| additional channels                                  | 7.2             | 14       |
|                                                      | 023             | 28       |
| alarm relay cables                                   | 9.2.5<br>10 / 3 | 20<br>67 |
| AMR-Control                                          | 413             | 14       |
| Analog output start / end                            | 10 4 4          | 68       |
| Analog outputs                                       | 10.4.4          | 75       |
| ARRAY                                                | 944             | 37       |
| Atmospheric pressure                                 | 10 5 6          | 72       |
| Atmospheric pressure compensation                    | 9.2.6           | 30       |
| Averaging                                            | 9.4             | 35       |
| Averaging mode                                       | 10.3.3          | 36, 58   |
| Averaging over individual manual meas, operations    | 9.4.3           | 36       |
| Averaging over measuring points                      | 9.4.8           | 40       |
| Averaging over the cycle                             | 9.4.7           | 39       |
| Averaging over the meas. time or                     | 9.4.5           | 38       |
| bar chart                                            | 9.5.1           | 42       |
| Base value                                           | 10.3.6          | 60       |
| Baud rate                                            | 10.5.3          | 71       |
| calibration resistance                               | 9.2.4           | 29       |
| Change the units                                     | 10.3.8          | 61       |
| CJ temperature                                       | 10.5.8          | 72       |
| Clear the memory                                     | 10.2.6          | 57       |
| code switch                                          | 7.3             | 19       |
| Code switches                                        | 1.2             | 3f.      |
| Cold junction compensation                           | 9.2.7           | 31       |
| cold junction temperature                            | 9.2.7           | 31       |
| Cold junction temperature :                          | 10.5.8          | 72       |
| Commissioning                                        | 5               | 15       |
| compensation                                         | 9.2             | 27       |
| Conductivity                                         | 9.2.3           | 28       |
| Configuration                                        | 10.5.8          | 12       |
| Configuring the menus                                | 9.7.2           | 46       |
| Continuous massuring point accor                     | 10 4 0          | 18       |
| continuous measuring point scan                      | 10.1.3          | 49       |
| conversion rate                                      | 10.5.5          | /1       |
| Correction values                                    | 10.1.3          | 49       |
| Correction values                                    | 10.3.7          | 60       |

| CPU measuring circuit board           | 73      | 10   |
|---------------------------------------|---------|------|
| Cross-section                         | 949     | 41   |
| Current output :                      | 1062    | 76   |
|                                       | 10.0.2  | 18   |
| Cyclics<br>Cyclic output              | 032     | 20   |
| Deta huffering                        | 9.3.2   | 17   |
| Data pullering                        | 0.0     | 70   |
| Data capies                           | 10.0.1  | 10   |
| Data entry                            | 0.D     | 24   |
| Data format                           | 10.5.3  | /1   |
| Date                                  | 10.1.1  | 48   |
| Date and time-of-day of maximum value | 9.1.2   | 20   |
| DC connection socket                  | 1.2     | 3    |
| DC socket                             | 6.1     | 16   |
| Decimal point setting                 | 10.3.6  | 60   |
| Designation                           | 10.3.2  | 58   |
| Device address                        | 10.5.2  | 70   |
| Device configuration                  | 10.5    | 70   |
| Device designation                    | 10.5.1  | 70   |
| Diameter                              | 9.4.9   | 41   |
| Differential measurement              | 9.5.2   | 42   |
| Display                               | 8       | 22   |
| Display illumination                  | 8.1     | 22   |
| Display of several measuring points   | 9.5     | 42   |
| Dynamic pressure                      | 9.2.6   | 30   |
| dynamic pressure probes               | 9.2.2   | 28   |
| dynamic pressure probes               | 9.2.5   | 30   |
| electrically isolated                 | 7.4     | 21   |
| Electromagnetic compatibility         | 12      | 79   |
| Element flags                         | 10.4.8  | 69   |
| entering setpoint                     | 9.2.4   | 29   |
| Exponential                           | 10.3.6  | 60   |
| External DC voltage supply            | 6.2     | 16   |
| Factor                                | 10.3.6  | 60   |
| Fail-safe mode                        | 10.2.5  | _55  |
| File name                             | 10.2.2  | 52f. |
| force transducers                     | 9.2.4   | 29   |
| FREE                                  | 9.2.2   | 28   |
| Function channels                     | 10.3.10 | 64   |
| Function keys                         | 8.3     | 23   |
| Function printouts                    | 9.7.3   | 47   |
| Function selection                    | 8.4     | 24   |
| Gain correction                       | 10.3.7  | 60   |
| Ground socket                         | 1.2     | 3    |
| Housing                               | 13.1    | 81   |
| How the system functions              | 4.1     | 10   |

84 ALMEMO® 5690-2CPU

|                                  |         | Keywords |
|----------------------------------|---------|----------|
| hand have a la                   | 40.0.5  | 50       |
| nysteresis                       | 10.3.5  | 59       |
| Hysieresis                       | 10.5.7  | 12       |
| injumination                     | 10.5.5  | 71       |
| Input and output caples          | 10.6.2  | 74       |
|                                  | 4       | 10       |
| Inverted relay control           | 10.6.2  | 74       |
| Keypad                           | 8       | 22       |
| кеураа                           | 1.1     | 2        |
| Language                         | 10.5.4  | 71       |
|                                  | 9.4.1   | 30       |
|                                  | 10.3.5  | 59       |
| line graph                       | 9.3.5   | 34       |
|                                  | 10.3.11 | 60       |
| Locking the sensor programming   | 10.3.4  | 59       |
|                                  | 0.1     | 16       |
| management                       | 10.3.11 | 65       |
| manual measuring point scan      | 9.3.1   | 32       |
| Maxime                           | 9.1.2   | 26       |
| Meas. channels                   | 10.5.8  | 72       |
| Measured data recording          | 10.2.2  | 53       |
| Measured value correction        | 9.2     | 27       |
| Measuring duration               | 10.2.2  | 38, 53   |
| Measuring inputs                 | 13.1    | 19, 80   |
| Measuring inputs                 | 1.2     | 4        |
| Measuring menus                  | 8.1     | 22       |
| Measuring operations             | 4.1.2   | 12       |
| Measuring point designation      | 10.3.2  | 58       |
| measuring point numbering        | 7.3     | 20       |
| Measuring point scan             | 9.3     | 32       |
| Measuring points list            | 9.5.3   | 25, 43   |
| measuring rate                   | /       | 18       |
| Measuring rate                   | 10.1.3  | 49       |
| Measuring time                   | 9.4.6   | 38       |
| Measuring with                   | 9       | 25       |
| Measuring with a measuring point | 9.1     | 26       |
| Memory                           | 10.2.1  | 52       |
| memory activation                | 10.1.2  | 48       |
| Memory capacity                  | 9.3.3   | 33       |
| Memory output                    | 10.2.6  | 56       |
| Manu Magauring nainta list       | 9.3.3   | 33       |
| wenu weasuring points list       | 9.5.3   | 43       |
| ivienu iviuiti-channel display   | 9.5.1   | 42       |
| menu selection                   | 8.1     | 22       |
| menu selection                   | 8.1     | 22       |
| Min time                         | 9.1.2   | 26       |

ALMEMO® 5690-2CPU 85

L

| Mixture ratio capacitive            | 926     | 30 |
|-------------------------------------|---------|----|
| Monitor mode                        | 10.2.5  | 55 |
| Multi-channel display               | 9.5.1   | 42 |
| Multi-point adjustment              | 10.3.11 | 65 |
| multi-point calibration             | 10.3.11 | 65 |
| multimedia card                     | 10.2.1  | 52 |
| multimedia card                     | 1 1     | 2  |
| multiplexer                         | 10 4 7  | 69 |
| Networked measuring                 | 944     | 37 |
| networking                          | 10.5.2  | 70 |
| Numbering of measuring operations   | 10.2.3  | 54 |
| O2 saturation                       | 926     | 30 |
| O2 saturation                       | 923     | 28 |
| ON                                  | 6.5     | 17 |
| ON                                  | 8.1     | 22 |
| Once-only output                    | 931     | 32 |
| Operating parameters                | 10.5.8  | 72 |
| Operation with rechargeable battery | 6.3     | 16 |
| Options                             | 13.2    | 81 |
| output format                       | 10.1.2  | 48 |
| Output function                     | 10.4.5  | 68 |
| Output menu functions               | 9.3.4   | 33 |
| Output modules                      | 10.6    | 72 |
| Output sockets                      | 1.2     | 3  |
| P-OFF                               | 8.1     | 22 |
| passive selector switch boards      | 7       | 18 |
| Peak value memory                   | 9.1.2   | 26 |
| pH probe                            | 9.2.3   | 28 |
| pH probes                           | 9.2.5   | 30 |
| Plug-in module AP                   | 1.2     | 4  |
| Plug-in module U-A10                | 1.2     | 4  |
| Plug-in module U-KS                 | 1.2     | 4  |
| Plug-in module U-MU                 | 1.2     | 4  |
| Plug-in module U-TH                 | 1.2     | 4  |
| Potential separation                | 7.4     | 21 |
| Power supply                        | 6       | 16 |
| Power supply                        | 13.1    | 80 |
| Power supply menu                   | 10.7    | 76 |
| pressure compensation,              | 10.3.9  | 64 |
| Print cycle factor                  | 10.4.1  | 66 |
| Process control                     | 4.1.3   | 13 |
| Product overview                    | 13.2    | 81 |
| Programmed analog value output      | 10.6.2  | /6 |
| Programming                         | 10      | 48 |
| programming menus                   | 10      | 48 |

86 ALMEMO® 5690-2CPU

|                                                   |              | Keywords |
|---------------------------------------------------|--------------|----------|
|                                                   | 0 1          |          |
| Programming menus                                 | 0.1<br>0.2 6 | 22       |
| Puchbutton                                        | 9.2.0        | 30       |
| resharaeshle betteries                            | 1.2          | 3        |
| rechargeable battery module                       | 3.3          | 9        |
| Deshargeable batten/module                        | 4.1          | 10       |
| Rechargeable ballery module                       | 13.2         | 01       |
| Reference channel 1                               | 10.4.6       | 69       |
| reference channel 2                               | 10.4.7       | 09       |
| reinitialization                                  | 10.3.9       | 04<br>17 |
| relay adaptora                                    | 0.0          | 67       |
| Polov acciment                                    | 10.4.3       | 67       |
| Relay assignment<br>Polov trigger adaptor, analog | 10.4.3       | 74       |
| Ding momony                                       | 10.0.2       | 74<br>53 |
| Scaling                                           | 10.2.2       | 55       |
| Scaling the analog output                         | 10.5.0       | 00<br>76 |
| scan time                                         | 7            | 18       |
| Scan time                                         | /<br>10 1 3  | 50       |
| Scanning mode                                     | 10.1.5       | 54       |
| Scanning mode                                     | 10.2.3       | ۰<br>۸۵  |
| Selecting a measuring point                       | 9.1.1        | 26       |
| Selecting the input channel                       | 10 3 1       | 57       |
| Selecting the measuring range                     | 10.3.1       | 61       |
| Selector switch boards                            | 7 3          | 10       |
| selector switch boards                            | 1.0          | 10       |
| Semi-continuous measuring point scan              | 10 1 3       | 49       |
| Sensor / transducer                               | 7 1          | 18       |
| Sensor adjustment                                 | 923          | 28       |
| Sensor programming                                | 10.3         | 11 57    |
| Sensor supply                                     | 6.4          | 17       |
| Sensor supply voltage, minimum                    | 10.4.2       | 66       |
| Sensor voltage                                    | 10.5.8       | 72       |
| Sensor voltage, min                               | 10.4.2       | 66       |
| Set measured value to zero                        | 9.2.1        | 27       |
| Sleep mode                                        | 10.2.5       | 54       |
| sliding average                                   | 9.4.1        | 36       |
| Smoothing meas. values                            | 9.4.1        | 36       |
| Software                                          | 4.1.3        | 14       |
| Special functions                                 | 10.4         | 66       |
| special measuring operations                      | 9.6          | 44       |
| Special measuring ranges                          | 10.3.11      | 65       |
| Standard delivery                                 | 3.2          | 9        |
| Standard display                                  | 9.1          | 26       |
| Standard equipment                                | 13.1         | 80       |
| standard volume flow                              | 9.4.9        | 41       |

L

| 13. Appendix                               |              |           |
|--------------------------------------------|--------------|-----------|
| Starting and atomning managuring anarotics | 10.2.4       | EA        |
| Status LEDe                                | 10.2.4       | 54<br>2f  |
| Suitable conditions                        | 1.1          | 21.<br>81 |
| Switching ON / OFF                         | 6.5          | 17        |
| Symbols indicating                         | 8.2          | 23        |
| Technical data                             | 13.1         | 80        |
| Temperature compensation                   | 9.2.5        | 30        |
| temperature compensation,                  | 10.3.9       | 64        |
| the measuring menus                        | 9            | 25        |
| Thermal coefficient                        | 9.6.1        | 44        |
| Time constant                              | 9.4.1        | 36        |
| time-of-day                                | 10.1.1       | 48        |
| Timer                                      | 9.4.6        | 38        |
| Times                                      | 10.1         | 48        |
| To switch off                              | 8.1          | 22        |
| total current requirement                  | 6.4          | 17        |
| total sampling rate                        | 10.1.3       | 50        |
| Trigger inputs                             | 10.6.2       | /5<br>70  |
| Trouble-shouling                           | 0.2.4        | 10        |
| I wo-point aujustment                      | 9.2.4        | 29<br>46  |
| liser menus                                | 9.7.2        | 40        |
| Volume flow measuring                      | 949          | 41        |
| Warranty                                   | 3.1          | 8         |
| Wet bulb globe temperature                 | 9.6.2        | 44        |
| WIN-Control                                | 4.1.3        | 14        |
| Wizard                                     | 9.6          | 44        |
| Wizards                                    | 8.1          | 22        |
| ZERO                                       | 9.2.1        | 27        |
| Zero-point adjustment                      | 9.2.2        | 28        |
| Zero-point correction                      | 10.3.7       | 60        |
|                                            | 10.4.2 23, 3 | 3, 35, 66 |
| Meas. duration                             | 10.1.4       | 51        |

## 13.4 Your contact

### 13. Appendix

### 13. Appendix